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Auf der Morgenstelle 14, 72076 Tübingen, Germany
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A variety of heterogeneous potentials are capable of localizing linear noninteracting waves. In this
work, we review different examples of heterogeneous localizing potentials which were realized
in experiments. We then discuss the impact of nonlinearity induced by wave interactions, in
particular, its destructive effect on the localizing properties of the heterogeneous potentials.
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From communications amongst ourselves to sensing
and imaging our surroundings, wave transmissions
through media play an integral role in our modern
lives. Regardless of their physical origin or scale,
most wave systems exhibit phenomena such as scat-
tering, reflection, refraction and interference. This
commonality thus provides a framework to discuss
universal features. Transmission media, modeled
by mathematical potentials, are often idealized
with the characteristics of integrability, hermitic-
ity (i.e. closed systems), linearity, and homogeneity.
In-situ applications rarely however are at this
level of perfection — even in a laboratory, such
situations require colossal experimental control and
accuracy to achieve. Besides, these small differences
from perfection may lead to novel and utilitarian
phenomena.

One such small difference is heterogeneity of
the medium. This heterogeneity can arise in sev-
eral different ways, but throughout, attenuation of
the wave transmission is possible — a phenomenon
called localization. The first heterogeneity to be

discussed is the presence of randomly distributed
impurities, leading to an exponential localization
in the eigenstates — called Anderson localization
(AL). In Sec. 1.1, this AL is described in greater
detail. The second form of heterogeneity arises from
the presence of a DC-biased electric field, creat-
ing an equidistant spectrum and an inverse facto-
rial eigenstate attenuation — called Wannier–Stark
localization. This case is detailed within Sec. 1.2.
The third case, covered in Sec. 1.3, comes from
potentials that are arranged in correlated fashions.
In these types of heterogeneity, a tuning parameter
may allow transitions from localized states to those
that are unattenuated, with critical states at the
transition point. The last form of heterogeneity to
be discussed arises from a specially designed poten-
tial, in which localization occurs not spatially, but
within a momentum space. This dynamical localiza-
tion will be presented in Sec. 1.4.

In addition to heterogeneity, a second devia-
tion from ideal transmission media is due to wave
interaction, resulting in nonlinear dependencies
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on wave amplitudes. Examples of such nonlinear
potentials are prolific, and include the AC Kerr
effect in optical media, atom–atom scattering in
boson condensates, screened Coulomb interactions
in electrons, and acoustic Langmuir waves in cold
plasmas. This nonlinearity can additionally be cou-
pled to heterogeneous localizing potentials, dras-
tically altering the resulting localization. Within
Sec. 2, the effect of nonlinearity on the dynamics
of packets in localizing media is discussed, with
individual subsections corresponding to the four
different heterogeneities.

In short, we address what happens when first,
the linear waves yield zero conductivity (localized)
in heterogeneous media, and then wave interac-
tions are added. Will an insulator change into a
conductor, or will localization remain? This is the
main question in the interplay between heterogene-
ity and nonlinearity, and helps define how these two
different ingredients collaborate.

1. Linear Waves in Localizing Media

1.1. Disorder — Anderson
localization

A fundamental problem of condensed matter
physics was (and still remains) the study of con-
ductivity of electrons in solids. Since in an infinite
perfect crystal, electrons can propagate ballistically,
a natural question is raised: what happens in a more
realistic situation when there is disorder in the crys-
tal due to impurities or defects? Will the increase of
the degree of disorder lead to a decrease of conduc-
tivity, or not? These questions were first answered
in a seminal paper by Anderson [1958], where it
was shown that for large enough strengths of dis-
order the diffusive motion of the electron will come
to a halt. In particular, Anderson studied an unper-
turbed lattice of uncoupled sites, where the pertur-
bation was considered to be the coupling between
them, and randomness was introduced in the on-site
energies. For this model he showed that for a large
degree of randomness, the transmission of a wave
decays exponentially with the length of the lattice.

This absence of wave diffusion in disordered
mediums is nowadays called Anderson localiza-
tion, and is a general wave phenomenon that
applies to the transport of different types of classi-
cal or quantum waves, like electromagnetic, acoustic
and spin waves. Its origin is the wave interference
between multiple scattering paths; i.e. the intro-
duction of randomness can drastically disturb the

constructive interference, leading to the halting of
waves. Anderson localization plays an important
role in several physical phenomena. For example,
the localization of electrons has dramatic conse-
quences for the conductivity of materials, since the
medium no longer behaves like a metal, but becomes
an insulator when the strength of disorder exceeds
a certain threshold. This transition is often referred
to as the metal-insulator transition (MIT).

Often theoretical and numerical approaches of
localization start with the Anderson model: a stan-
dard tight-binding (i.e. nearest-neighbor hopping)
with an on-site potential disorder. This can be
represented in one dimension by a time-dependent
Schrödinger equation

i
∂ψl
∂t

= εlψl − ψl+1 − ψl−1. (1)

Here {εl} are the random on-site energies, which
are drawn from an uncorrelated uniform distribu-
tion in [−W/2,W/2], where W parametrizes the
disorder strength. ψl is the complex wavefunction
associated with lattice site l. Using the substitu-
tion, ψl = Al exp(−iλt) yields a time-independent
form

λAl = εlAl −Al+1 −Al−1. (2)

The solution consists of both a set of eigenvectors
called the normal modes (NMs), Aνl , (normalized
as
∑

l(A
ν
l )

2 = 1 ), and also a set of eigenvalues called
the normal frequencies, λν ∈ [−W/2 − 2,W/2 + 2]
which exist in a spectral band of width ∆ = 4+W .
The eigenvectors are exponentially localized, mean-
ing that their asymptotic behavior can be described
by an exponential decay

|Aνl | ∼ e−l/ξ(λν), (3)

where ξ(λν) is a characteristic energy-dependent
length, called the localization length. Naturally, ξ →
∞ corresponds to an extended eigenstate. Several
approaches have been developed for the evaluation
of ξ, such as: the transfer matrix method, schemes
based on the transport properties of the lattice, and
perturbative techniques. For more information on
such approaches, the reader is referred to [Kramer &
MacKinnon, 1993] and references therein. In gen-
eral, these approaches approximate the localiza-
tion length as ξ(λν) ≈ 96/W 2 for weak disorder
strengths, W ≤ 4. On average, the localization vol-
ume (i.e. spatial extent) V of the NM is on order of
3.3ξ(0) for these weak disorder strengths, and tends
to unity in the limit of strong disorder.
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In real experiments, measurements of trans-
mission and conductivity are mainly performed, so
the need for a connection between the conductiv-
ity and the spectrum becomes apparent. The basic
approach towards the fulfillment of this goal was the
establishment of a connection between the conduc-
tivity and the sensitivity to changes of the boundary
conditions of the eigenvalues of the Hamiltonian of a
finite (but very large) system [Edwards & Thouless,
1972]. The sensitivity to the boundary conditions
turned out to be conceptually important for the
formulation of a scaling theory for localization
[Abrahams, 1979]. The main hypothesis of this
single-parameter scaling theory is that close to the
transition between localized and extended states,
there should be only one scaling variable which
should depend on the conductivity for the metallic
behavior, and the localization length for the insulat-
ing behavior. This single parameter turned out to be
a dimensionless conductance (often called Thouless
conductance or Thouless number) defined as

g(N) =
δE

∆E
, (4)

where δE is the average energy shift of eigenval-
ues of a finite system of size N due to the change
in the boundary conditions, and ∆E is the average
spacing of the eigenvalues. For localized states and
large N , δE becomes very small and g(N) exponen-
tially vanishes. In the metallic regime the boundary
conditions always influence the energy levels, even
in the limiting case of infinite systems. The intro-
duction of the Thouless conductance led to the for-
mulation of a simple criterion for the occurrence
of Anderson localization: g(N) < 1. In one- and
two-dimensional random media this criterion can be
reached for any degree of disorder by just increasing
the size of the medium, while in higher dimensions
a critical threshold exists.

The experimental observation of Anderson
localization is not easy, for example, due to
the electron-electron interactions in cases of elec-
tron localization, and the difficult discrimination
between localization and absorption in experi-
ments of photon localization. Nevertheless, nowa-
days the observation of Anderson localization has
been reported in several experiments, a few of
which we quote here. In [Wiersma et al., 1997;
Störzer et al., 2006] localization of light in three-
dimensional random media was reported. Anderson
localization has also been observed in experiments
of transverse localization of light for two- [Schwartz

et al., 2007] and one- [Lahini et al., 2008] dimen-
sional photonic lattices. Anderson localization has
also been observed in experiments of localization of
a Bose–Einstein condensate in an one-dimensional
optical potential [Billy et al., 2008; Roati et al.,
2008], and of elastic waves in a three-dimensional
disordered medium [Hu et al., 2008]. In addition,
the observation of the MIT in a three-dimensional
model with atomic matter waves has been reported
[Chabé et al., 2008].

1.2. Wannier–Stark ladder–Bloch
oscillations

Another intriguing class of problems appears when
replacing the disorder potential εl by a DC field
εl = lE (E denotes the strength of the field). As
an example, one can mention the textbook solid
state problem of an electron in a periodic poten-
tial with an additional electric field (see e.g. [Tsu,
1993]) which leads to investigations of Bloch oscil-
lations [Wannier, 1960] and Landau–Zener tunnel-
ing [Landau, 1932; Zener, 1932; Liu et al., 2002] in
different physical systems. Nowadays, such effects
are experimentally observed by employing optical
waves in photonic lattices [Pertsch et al., 1999;
Morandotti et al., 1999] and ultracold atoms in
optical lattices [Anderson & Kasevich, 1988; Gus-
tavsson et al., 2008; Morsch et al., 2001]. If the
well depth of the periodic potential is large enough,
Landau–Zener tunneling is suppressed, the prob-
lem is discretized (Wannier–Stark ladder) and the
resulting eigenvalue problem is explicitly solved in
terms of the localized eigenmodes of the system (see
e.g. [Fukuyama et al., 1973]). Let us consider a dis-
crete linear Schrödinger equation, as in Eq. (1) but
now with a DC bias E:

iψ̇l = lEψl − ψl+1 − ψl−1. (5)

Note this is the governing equation e.g. for dilute
Bose–Einstein condensate (BEC) dynamics in a
deep and biased optical potential, whereby |ψl(t)|2
implies BEC density in the lth potential well. Here,
ψl is also a site’s complex amplitude, and the same
substitution as in Eqs. (1) and (2) can be made to
arrive at the eigenvalue problem

λAl = lEAl −Al+1 −Al−1. (6)

In the case of an infinite lattice, this yields eigenval-
ues of λν = Eν (with integer ν). These eigenvalues
form an equidistant spectrum which extends over
the whole real axis — the Wannier–Stark ladder.
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The corresponding normal modes obey the general-
ized translational invariance Aν+µl+µ = Aνl [Wannier,
1960] and are given by the Bessel functions of the
first kind, A(0)

l = Jl(2/E). All normal modes are
spatially localized with an asymptotic decay of

|A(0)
l→∞| →

(
1
E

)l
l!

.

The eigenstates are thus more strongly localized
as compared to the disordered case, where the
eigenstates decay exponentially. Remarkably, var-
ious observables exhibit temporal periodic motion
(Bloch oscillations) with the period TB = 2π/E.

The localization volume of an eigenstate is
determined via L= 1/

∑
l|A(0)

l |4. It characterizes
the spatial extent of the eigenstate as a function
of E. In Fig. 1, the localization volume of an eigen-
state is shown as a function of E. The asymptotic
behavior was found to be L ∝ −[E · lnE]−1 for
E→ 0, and L→ 1 for E→∞ [Krimer et al., 2009].

1.3. Aubry–André chains — An
example of quasiperiodicity

A periodic lattice gives a translational symmetry.
A simple way to destroy the symmetry is to intro-
duce a secondary periodic lattice of a different and
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Fig. 1. Localization volume L of the eigenfunction A
(0)
n ver-

sus E. Insets: Explicit form of the eigenfunction across the
chain for two values E = 2 and E = 0.2 [(b), blue; (r), red].
Figure adapted from [Krimer et al., 2009].

incommensurate frequency. This idea has gained
much attention in solid-state via quasicrystals
[Levine & Steinhardt, 1984; Trebin, 2003; Vekilov &
Chernikov, 2010]. The idea of incommensuration
also extends into optics via sequenced (e.g.
Fibonacci, Thue–Morse, Rudin–Shapiro) potentials
[Maciá & Domı́nguez-Adame, 2000; Albuquerque &
Cottam, 2003]. More so, it has recently been focused
on ultracold atomic physics, in terms of bichromatic
lattices [Guidoni et al., 1997; Modugno, 2009, 2010;
Albert & Leboeuf, 2010].

Regardless of the subfield, for large lattices the
dynamics is described in a tight-binding form — as
in Eqs. (1) and (5) — and goes by the moniker of
Aubry–André model

i
∂ψl
∂t

= ζ cos(2παl) · ψl − ψl+1 − ψl−1 (7)

in which the parameter α dictates the commensu-
rability ratio between the two different frequencies.
The parameter ζ dictates a relative lattice strength,
much as W for the disordered Anderson model. As
in Eqs. (2) and (6), a substitution is made to turn
Eq. (7) into an eigenvalue problem:

λAl = ζ cos(2παl) ·Al −Al+1 −Al−1. (8)

Originally this model was introduced by Harper
[1955b, 1955a] [hence Eq. (7) is also synonymously
the Harper model ] to describe a low-temperature
two-dimensional electron gas in a high magnetic
field, in which the parameter α describes incom-
mensurability between the quantum of magnetic
flux and the lattice cell. It is commonplace to make
the lattice as largely incommensurate as possible
for studies in the Aubry–André model; the inverse
golden mean is often used α = (

√
5 − 1)/2. We shall

henceforth keep with this standard convention.
Using the Fourier form ψl =

∑
k e

2πiαklφk,
Eq. (7) transforms into the quasi-momentum basis
of {φk}

i
∂φk
∂t

= 2cos(2παk) · φk − ζ

2
φk+1 − ζ

2
φk−1. (9)

Note that Eqs. (7) and (9) are not identical, as
seen in the location of ζ parameter. Equation (7)
dictates dynamics in a position representation and
ζ occurs on the on-site energy terms, while Eq. (9)
dictates dynamics in a momentum representation,
and ζ appears in the kinetic coupling of the momen-
tum modes. Even though the two equations are
strictly different, under exchange of ζ the two
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equations are equivalent in form — a property
known as self-duality, first derived by Aubry and
André [1980]. Both equations can easily be seen to
be equivalent without ANY parameter exchange if
ζ = 2. This self-dual symmetry is nicely observed
in the eigenstates. For the critical value of ζ = 2,
the two representations have identical localization
lengths. Additionally, the localization volumes can
be probed as in the prior section, using either Lψ =
1/
∑

l |ψl|4 or Lφ = 1/
∑

k |φk|4. This is shown in
Fig. 2. In the figure, for small ζ, states localized
in position space are extended in momentum space.
As ζ sweeps across ζ = 2, the strong transition from
localized to extended is seen for Lψ (and vice-versa
for Lφ).

The value ζ = 2 is thus tied strongly to criti-
cality and fractality of eigenstates, whose existence
in quasiperiodic models has been quite an active
hotbed. In terms of the Aubry–André model, this
has focused on changes in the density of states
[Soukoulis & Economou, 1982], density–density cor-
relations [Boers et al., 2007; Li et al., 2010],
Husimi/Wigner distributions [Ingold et al., 2002;
Aulbach et al., 2004], and spreading of density
moments [Hu et al., 2000; Hufnagel et al., 2001;
Diener et al., 2001]. The Aubry–André model has
also seen modification by another parameter ν,

Fig. 2. The self-duality of the Aubry–André model: For lat-
tice size of 10 946, as a function of the parameter ζ is shown
the average localization volumes in both real space (Lψ,
black) and momentum space (Lφ, gray). For small ζ < 2, the
eigenstates are extended in real space (Lψ � 1) and local-
ized in momentum space (Lψ ∼ 1). At ζ = 2 the exchange
is seen, i.e. for ζ > 2 we see the eigenstates localized in real
space and extended in momentum space. Figure adapted from
those shown in [Aulbach et al., 2004].

introduced in Eq. (7) as cos(2παl) 	→ cos(2παnν),
in order to further probe and control the mobil-
ity edge [Griniasty & Fishman, 1988; Sarma et al.,
1988; Varga et al., 1992]. Study of the Aubry–André
model continues onward, beyond simple tight-
binding formalisms [Johansson & Riklund, 1991;
Biddle et al., 2009].

1.4. Quantum kicked rotor —
Localization in momentum
space

There is a growing interest in the study of quan-
tum systems with time-dependent Hamiltonians.
An important motivation in this area is a bet-
ter understanding of the quantum dynamics within
simple systems whose classical counterparts exhibit
chaotic behavior. One of the relatively simple mod-
els to study quantum dynamics is a quantum kicked
rotor. This model was introduced in [Casati et al.,
1979] as a quantum analog of the standard map-
ping [Chirikov, 1979], which is the basic model of
dynamical chaos in the classical limit. In spite of
this formal analogy, the dynamical chaos in the
quantum kicked rotor exhibits some specific fea-
tures closely related with the quantum nature of
the underlying model. Namely, in the classical case
the motion depends on a single parameter, K, the
dimensionless strength of kick. For each value of K
the motion can be quasi-periodic, chaotic, or accel-
erating, depending on the initial conditions. At
small K the chaotic regions are isolated and sep-
arated by the Kolmogorov–Arnold–Moser (KAM)
trajectories; consequently the motion is bounded.
For K = Kc ≈ 0.97146, the last of these trajec-
tories disappears and diffusion in the momentum
space takes place. On the other hand, in the quan-
tum case the energy remains bounded and does
not increase with time even for K > Kc. In other
words, the quantum suppression of classical dif-
fusion in the phase space has taken place in the
model of quantum kicked rotor [Izrailev, 1990]. The
quantum localization of classical chaotic diffusion is
sometimes called dynamical localization. This phe-
nomenon is in many aspects analogous to Anderson
localization in the models with disorder [Fishman
et al., 1982]. However, in the case of quantum chaos
there is no randomness and transient diffusion in
the corresponding classical system. In other words,
the dynamical localization in a quantum kicked
rotor occurs in a completely deterministic system.
In addition, in the cases where the period of kicks
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equals to an integer multiple of the natural period
of rotor, quantum resonances and ballistic diffusion
occur.

The quantum kicked rotor is described by the
Schrödinger equation:

i
∂ψ

∂t
= Ĥψ

= −1
2
∂2ψ

∂θ2
+ k cos(θ)ψ

+∞∑
m=−∞

δ(t−mT ).

(10)

Here, θ and −i∂/∂θ are the position and the conju-
gated momentum operators of the rotor. All quan-
tities are in units of � = 1, and the motion is
considered on a ring with periodic boundary con-
ditions ψ(θ + 2π) = ψ(θ). The parameter k is
the kick strength and T is the period between
kicks. The evolution operator over one period T is
given by

Û = exp
(
−iT

2
∂2

∂θ2

)
exp(−ik cos(θ)). (11)

The solution ψ(θ, t) of Eq. (10) can be expanded on
the basis of the angular momentum eigenfunctions
in a form

ψ(θ, t) =
1√
2π

∞∑
n=−∞

An(t) exp(inθ), (12)

where the coefficients An(t) are the Fourier coeffi-
cients of the time-dependent wave function ψ(θ, t).
As a result of the action of the evolution operator,
Eq. (11), on the wave function ψ(θ, t) over one
period T , the following mapping of the Fourier
coefficients An is obtained

An(t+ T )

=
∑
m

(−i)n−mJn−m(k)Am(t) exp
(
−i1

2
Tm2

)
,

(13)

where Jn−m(k) is the Bessel function of the first
order [Casati et al., 1979]. It is found from Eq. (13)
that — opposite to the classical model where
one parameter determines the system behavior —
in the quantum model, behavior depends on two
parameters: k and T [Izrailev, 1990]. The pertur-
bation strength k gives the effective number of
unperturbed states covered by one kick, and T is
the ratio between the period of kicks T and the

natural period of rotor, set to one in this case.
When the ratio between these two periods is ratio-
nal (i.e. T is a rational number), the rotor energy
E(t) =

∑
n |An(t)|2n2/2, grows ballistically in

time as t2, at variance to the classical case. This
phenomenon is called quantum resonance (being
caused by pure quantum interference effects) and
has no relation to the classical behavior [Casati
et al., 1979]. On the other hand, for irrational
T , suppression of the energy diffusion occurs and
the spreading of the wave packet stops. Equa-
tion (13) can be also treated as an eigenvalue
problem

λνA
ν
n =

∑
m

(−i)n−mJn−m(k) exp
(
−i1

2
Tm2

)
Aνm.

(14)

The complex eigenvectors are localized for irra-
tional T ; |Aνn→∞| → 0. The characteristic eigen-
values λν are complex numbers placed on the
unit circle in the complex plane, λν = exp(iχν).
For rational T then, extended eigenvectors are
obtained.

One of the first experimentally-grounded evi-
dences of localization in a quantum system (which
leads to the suppression of the chaotic diffusion
in the action space) was obtained with hydrogen
atoms in a microwave field [Bayfield et al., 1989].
The quantum energy spectrum of this system —
which consists of excited hydrogen atoms inside
an intense time dependent magnetic field — is
investigated in the regime when underlying clas-
sical motion has passed from regular to irregu-
lar behavior, via increasing magnetic field strength
[Delande & Gay, 1987]. The first experimental real-
ization of the quantum kicked rotor was obtained in
a sample of dilute ultracold sodium atoms in a peri-
odic standing wave of near-resonant light, pulsed
periodically in time to approximate a series of delta
kicks [Moore et al., 1995]. In these experiments,
atomic momenta were measured as a function of
interaction time and the pulse period. The diffusive
growth of energy up to a quantum break time, fol-
lowed by dynamical localization, was observed. In
addition, in cases with the pulse period equal to
an integer multiple of the rotor period, the ballis-
tic diffusion and corresponding quantum resonances
were observed. All these experimental findings con-
firmed previously established numerical and the-
oretical predictions of the quantum kicked rotor
model.
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2. Nonlinear Waves: Destruction
of Localization

2.1. Disorder

A number of recent studies have been devoted to
uncover the interplay of nonlinearity and disor-
der [Molina, 1998; Pikovsky & Shepelyansky, 2008;
Kopidakis et al., 2008; Flach et al., 2009; Skokos
et al., 2009; Veksler et al., 2009; Mulansky et al.,
2009; Skokos & Flach, 2010; Flach, 2010; Laptyeva
et al., 2010; Basko, 2011]. Most of these stud-
ies consider the evolution of an initially localized
wave packet. While the linear equations will trap
the packet, the presence of nonlinearity leads to
a spreading of the packet well beyond the limits
set by the linear theory. Numerical studies suggest
that the second moment m2 of the wave packet
grows subdiffusively in time following a power law
tα with α < 1. On the other hand, for weak
enough nonlinearity, wave packets appear to be
frozen over the complete available integration time,
thereby resembling Anderson localization, at least
on finite time scales. As recently argued by Johans-
son et al. [2010], these states may be localized
for infinite times and correspond to Kolmogorov–
Arnold–Moser (KAM) torus structures in phase
space.

2.1.1. Basic models

Let us consider as our first model the disordered
nonlinear Schrödinger (DNLS) chain, which has
equations of motion

i
∂ψl
∂t

= εlψl − ψl+1 − ψl−1 + β|ψl|2ψl (15)

with a nonlinearity strength β and random on-site
energies chosen as in Eq. (1).

A second model we consider is the Klein–
Gordon (KG) chain of coupled anharmonic oscil-
lators
∂2ul
∂t2

= −ε̃lul − u3
l +

1
W

(ul+1 + ul−1 − 2ul), (16)

where ε̃l are uncorrelated random values chosen
uniformly in the interval [1/2, 3/2]. Note in this
model, ul is the generalized coordinate on the site
l and is wholly real, as opposed to Eq. (15)’s com-
plex ψl values. Nevertheless, we can reduce the lin-
ear form of Eq. (16) [remove the cubic u3

l term]
to the same eigenvalue form as Eq. (2). This is
done with the transforms εl = W (ε̃l − 1) and
λν = Wω2

ν − W − 2, where ων are the KG’s
eigenfrequencies, ω2

ν ∈ [1/2, 3/2 + 4/W ]. The width

of the KG’s squared eigenfrequency spectrum is
then ∆ = 1 + 4/W .

Additionally, in the KG model the total energy

E =
∑
l

El

where

El ≡ 1
2

(
∂ul
∂t

)2

+
1
2
ε̃lu

2
l +

1
4
u4
l +

1
2W

(ul+1 − ul)2

≥ 0

acts as the nonlinear control parameter, similar to
β for the DNLS case. Both models conserve the
total energy; additionally, the DNLS conserves the
total norm S =

∑
l |ψl|2. For small amplitudes,

an approximate mapping, βS ≈ 3WE, from the
KG model to the DNLS model exists [Kivshar &
Peyrard, 1992; Kivshar, 1993; Johansson, 2006].
Because of this mapping, in the remainder of this
section we shall focus on the DNLS model’s ana-
lytics, and return to the KG model only in our
observations.

The average spacing d of eigenvalues of NMs
within the range of a localization volume is of the
order of d ≈ ∆/V , which becomes d ≈ ∆W 2/300 for
weak disorder. The two frequency scales d < ∆ are
expected to determine the packet evolution details
in the presence of nonlinearity.

The equations of motion in Eq. (15) can be
rewritten in normal mode space as

iφ̇ν = λνφν + β
∑

ν1,ν2,ν3

Iν,ν1,ν2,ν3φ
∗
ν1φν2φν3 (17)

where the variables φν =
∑

lA
ν
l ψl determine the

complex time-dependent behavior of the NMs and
Iν,ν1,ν2,ν3 =

∑
lAν,lAν1,lAν2,lAν3,l are the overlap

integrals. The frequency shift of a single site oscil-
lator induced by the nonlinearity is δ ∼ βn for
DNLS (here n = |ψ|2), and δ ∼ E for the KG model
[Skokos et al., 2009; Laptyeva et al., 2010].

We sort the NMs with increasing center-of-
norm coordinate Xν =

∑
l l(A

ν
l )

2. For DNLS, we
monitor the time-dependent normalized norm den-
sity distribution in NM space, zν ≡ nν/

∑
µ nµ.

The KG counterpart is the normalized energy den-
sity distribution in NM space zν ≡ Eν/

∑
µ Eµ. We

characterize distributions by means of the second
moment m2 =

∑
ν(ν − ν)2zν (where ν =

∑
ν zν),

which quantifies the wave packet’s degree of spread-
ing, and the participation number P = 1/

∑
ν z

2
ν ,

which measures the number of effectively excited
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sites. The ratio ζ = P 2/m2 (the compactness index
[Skokos et al., 2009]) quantifies the sparseness of a
packet.

2.1.2. Regimes of wave packet spreading

We consider compact wave packets at t = 0 span-
ning a width L centered in the lattice, such that
within L there is a constant norm density of n and
a random phase at each site (outside the volume
L the norm density is zero). In the KG case, this
corresponds to exciting each site in the width L
with the same energy density, E = E/L, i.e. set-
ting initial momenta to pl = ±√

2E with randomly
assigned signs. If δ ≥ ∆ then a substantial part
of the wave packet will be self-trapped [Kopidakis
et al., 2008; Skokos et al., 2009]. This is due to non-
linear frequency shifts, which will tune the excited
sites immediately out of resonance with the nonex-
cited neighborhood [Flach & Willis, 1998; Flach &
Gorbach, 2008]. In fact, partial self-trapping will
occur already for δ ≥ 2 since at least some sites in
the packet may be tuned out of resonance. If now
δ < 2, self-trapping is avoided, and the wave packet
can start to spread. For L < V , the packet will
spread over the localization volume during the time
τlin ≈ 2π/d (even for β = 0). At that time, the new
norm density will drop down to n(τlin) ≈ (nL)/V .
For L > V the norm density will not change appre-
ciably up to τlin and n(τlin) ≈ n. The nonlinear
frequency shift βn(τlin) should be now compared
with the average spacing d. If βn(τlin) > d, all NMs
in the packet are resonantly interacting with each
other. We refer to this regime as strong chaos. If
instead βn(τlin) < d, NMs are weakly interacting
with each other. We refer to this regime as weak
chaos. Note that a spreading wave packet that is
launched in the regime of strong chaos will increase
in size, drop its norm (energy) density, and therefore
the crossover into the asymptotic regime of weak
chaos must occur at later times. For a single-site
excitation L = 1 the strong chaos regime shrinks to
zero width in the norm/energy parameter and one
is left only with either weak chaos or self-trapping
[Pikovsky & Shepelyansky, 2008; Flach et al., 2009;
Skokos et al., 2009; Veksler et al., 2009]. To sum-
marize, the expected spreading regimes for L ≥ V
are:

δ > 2 : onset of self-trapping;

d < δ < 2 : strong chaos;

δ < d : weak chaos.

(18)

2 4 6 8
W

10-2

10-1

100

101

δ

Weak Chaos

Self-Trapping

Strong Chaos

Fig. 3. Parametric space of disorder, W , versus the
frequency shift induced by nonlinearity, δ, for the DNLS
model. The KG analog is obtained by the small amplitude
mapping. Three spreading regimes are shown for dynamics
dictated by: (i) weak chaos (pale blue), (ii) strong chaos
(green), and (iii) the onset of self-trapping (pale red). The
three circles show numerical values used in Fig. 4. Adapted
from [Laptyeva et al., 2010].

Figure 3 sketches the predicted regimes in a para-
metric space for the case L = V , in which lines rep-
resent the regime boundaries δ = d and δ = 2. Note
that we used d = ∆/(3.3ξ(0)) with ξ(0) = 96W−2

being the weak disorder estimate.

2.1.3. Resonances and chaos

A NM with index µ in a layer of width V in the
cold exterior — which borders the packet but will
belong to the core of the spreading packet at later
time — is either incoherently heated by the packet,
or resonantly excited by some particular NM from
a layer with width V inside the packet. The reso-
nant channel will lead to spreading only if a new
resonance can be found. Due to the disorder this
is not possible. Then a single resonance will simply
lead to beatings (oscillations) of the wave packet.
In order to finally achieve true spreading, we have
to destroy the phase coherence of the wave packet.
Therefore there is no other way but to allow inco-
herent chaotic dynamics to take place, if spreading
is observed.

Chaos is a combined result of resonances and
nonintegrability. Let us estimate the number of res-
onant modes in the packet for the DNLS model.
Excluding secular interactions, the amplitude of a
NM with |φν |2 = nν is modified by a triplet of other
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modes µ ≡ (µ1, µ2, µ3) in first order in β as

|φ(1)
ν | = β

√
nµ1nµ2nµ3 ·R−1

ν,µ,

Rν,µ ∼
∣∣∣∣ dλ

Iν,µ1,µ2,µ3

∣∣∣∣,
(19)

where dλ = λν +λµ1 −λµ2 −λµ3 . The perturbation
approach breaks down, and resonances set in, when√
nν < |φ(1)

ν |. Since all considered NMs belong to
the packet, we assume their norms to be equal to n.
The main result is that the probability of a packet
mode to be resonant is given by P = 1 − e−Cβn
[Krimer & Flach, 2010], with C being a constant
depending on the strength of disorder. Then

m2 ∼ D t, D ∼ β2n2[P(βn)]2 (20)

and finally

n−2 ∼ β[1 − e−Cβn]t1/2. (21)

The solution of this equation yields a crossover from
subdiffusive spreading in the regime of strong chaos
to subdiffusive spreading in the regime of weak
chaos:

m2 ∼
{

[β2t]1/2, Cβn > 1 (strong chaos);

[β4t]1/3, Cβn < 1 (weak chaos).
(22)

The only characteristic frequency scale here is 1/C.
From the above discussion of the different spreading
regimes it follows that 1/C ≈ d.

2.1.4. Computational results

Ensemble averages over disorder were calculated for
1000 realizations with W = 4 and are shown in
Fig. 4 (upper row). We use L = V = 21 and system
sizes of 1000–2000 sites. For DNLS, an initial norm
density of n = 1 is taken, so that δ = β. The values
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Fig. 4. Upper row: Average log of second moments (inset: average compactness index) versus log time for the DNLS/KG
on the left/right, for W = 4, L = 21. Colors/letters correspond to three different regimes: (i) weak chaos — (b)lue, β = 0.04
(E = 0.01), (ii) strong chaos — (g)reen, β = 0.72 (E = 0.2), (iii) self-trapping — (r)ed, β = 3.6 (E = 0.75). The respective

lighter surrounding areas show one standard deviation error. Dashed lines are to guide the eye to ∼ t1/3, while dot-dashed
guides for ∼ t1/2. Lower row: Finite difference derivatives α(log t) = d〈log m2〉/d log t for the smoothed m2 data respectively
from the above curves. Adapted from [Laptyeva et al., 2010].
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of β (E for KG) are chosen to give three expected
spreading regimes (see Fig. 3), respectively β ∈
{0.04, 0.72, 3.6} and E ∈ {0.01, 0.2, 0.75}. In the
predicted regime of weak chaos, we indeed find a
subdiffusive growth of m2 according to m2 ∼ tα

with α ≈ 1/3 at large times. In the expected regime
of strong chaos, we observe exponents α ≈ 1/2 for
103 � t � 104 (KG: 104 � t � 105) in Fig. 4.
Time averages in these regions over the green curves
yield α ≈ 0.49 ± 0.01 (KG: 0.51 ± 0.02). With
spreading continuing in the strong chaos regime, the
norm density in the packet decreases, and eventu-
ally satisfies βn ≤ d. That leads to a dynamical
crossover to the slower weak chaos subdiffusive
spreading, as predicted. Fits of the further decay
suggest α ≈ 1/3 at 1010 � t � 1011. In the
regimes of weak and strong chaos, the compact-
ness index at largest computational times is ζ ≈
2.85 ± 0.79 (KG: 2.74 ± 0.83), as seen in the blue
and green curves of Fig. 4. This means that the
wave packet spreads, but remains rather compact
and thermalized (ζ ≈ 3). The duration of α = 1/2
spreading (and the crossover time) is largely depen-
dent on how deep we are initially in the strong
chaos regime. This is illustrated in Fig. 5 for the
KG model. For W ∈ {1, 2} a long-lasting strong
chaos spreading is clearly observed. For W ∈ {4, 6}
the width in the energy density is small and, even if,

Fig. 5. Spreading behavior in the strong chaos regime for
the KG model, with an initial energy density of E = 0.1. The
four curves are for the disorder strengths of: W = 1 — (r)ed,
W = 2 — (g)reen, W = 4 — (o)range, W = 6 — (b)lue.
Inset: the KG analog of the DNLS parametric space from
Fig. 3. The four points correspond to the disorder strengths
used in the main portion of the figure. Adapted from
[Laptyeva et al., 2010].

initially, the energy density is chosen to give strong
chaos, its decrease due to spreading will get the sys-
tem into the weak chaos regime with α < 1/2.

2.1.5. Generalizations

Let us apply the same theoretical arguments to a
general D-dimensional lattice with the nonlinearity
of the order σ:

iψ̇l = εlψl − β|ψl|σψl −
∑

m∈D(l)

ψm. (23)

Here l denotes a D-dimensional lattice vector with
integer components, and m ∈ D(l) defines its set
of nearest neighbors. We assume that all NMs are
spatially localized (which can be obtained for strong
enough disorder W). A wave packet with the same
average norm n per excited mode has a second
moment m2 ∼ n−2/D. The nonlinear frequency shift
is proportional to βnσ/2.

A straightforward generalization of the ex-
pected regimes of wave packet spreading [Flach,
2010] with L ≥ V leads to the following: self-
trapping if βnσ/2 > ∆, strong chaos if βnσ/2 > d,
and weak chaos if βnσ/2 < d. The regime of strong
chaos can be observed for n > [d/β]2/σ .

Similar to the above we obtain a diffusion
coefficient

D ∼ β2nσ[P(βnσ/2)]2. (24)

In both regimes of strong and weak chaos the
spreading is subdiffusive [Flach, 2010]:

m2 ∼



[β2t]
2

2+σD , (strong chaos);

[β4t]
1

1+σD , (weak chaos).
(25)

The number of resonances on the wave packet
surface is NRS ∼ βn

D(σ−2)+2
2D . This number increases

with time for

D > Dc =
1

1 − σ

2

, σ < 2. (26)

We expect that the wave packet surface will not
stay compact if Eq. (26) is fulfilled [Flach, 2010].
Instead, surface resonances will lead to a resonant
leakage of excitations into the exterior. This process
will increase the surface area, and therefore lead to
even more surface resonances, which increase the
surface area further on. The wave packet will frag-
mentize, perhaps get a fractal-like structure, and
lower its compactness index. The spreading of the
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wave packet will speed up, but will not anymore
be due to pure incoherent transfer, instead it will
become a complicated mixture of incoherent and
coherent transfer processes. For such cases, Ander-
son localization will be destroyed quickly even in
the tails of wave packets [Skokos & Flach, 2010].

The numerical evidence [Skokos & Flach, 2010]
for the validity of predictions Eq. (25) for the gener-
alized KG model ül = −ε̃lul−|ul|σul+(1/W )(ul+1+
ul−1−2ul) and energies away from the self-trapping
regime are presented in Fig. 6. The energy val-
ues used there cross the boundary between the
weak and strong chaos regimes around the interval
1 � σ � 2. In particular, the computed exponents
are in good agreement with the theoretical predic-
tion for weak chaos [Eq. (25)] for σ ≥ 2. For smaller
values of σ they smoothly cross over to the predic-
tion of strong chaos, as expected.

2.2. Wannier–Stark ladder

The evolution of a wave packet in a nonlin-
ear Wannier–Stark ladder was studied in [Krimer
et al., 2009]. Nonlinearity induces frequency shifts
and mode–mode interactions and destroys localiza-
tion. For large strength of nonlinearity we observe
single-site trapping as a transient, with subsequent
explosive spreading, followed by subdiffusion. For
moderate nonlinearities an immediate subdiffusion
takes place. Finally, for small nonlinearities we
find linear Wannier–Stark localization as a tran-
sient, with subsequent subdiffusion. For single-mode

Fig. 6. Spreading exponent α versus the nonlinearity power
σ for integration without dephasing (filled squares) and for
integration with dephasing of NMs (filled triangles). The the-
oretically predicted boundaries of weak chaos and strong
chaos are plotted by dashed and solid lines, respectively.
Adapted from [Skokos & Flach, 2010].

excitations, additional stability and instability
intervals with respect to the DC bias strength were
shown to exist. The onset of subdiffusive spreading
was also observed in [Datta & Jayannavar, 1998;
Kolovsky et al., 2010] for two runs on rather short
scales up to t = 105.

2.2.1. Basic model

We consider the discrete nonlinear Schrödinger
equation with a DC bias E

i
∂ψl
∂t

= lEψl − ψl+1 − ψl−1 + β|ψl|2ψl. (27)

As in Eq. (17), a transformation to the NM space is
first made using φν =

∑
lA

ν
l exp(−iλνt). The linear

term can be gauged out by using a secular normal
form φν = χν exp(−iνEt), yielding

i
∂χν
∂t

= β
∑

ν1,ν2,ν3

Iν,ν1,ν2,ν3χ
∗
ν1χν2χν3e

i(ν+ν1−ν2−ν3)Et,

(28)

where

Iν,ν1,ν2,ν3 ≡
∑
n

A
(0)
n−νA

(0)
n−ν1A

(0)
n−ν2A

(0)
n−ν3 (29)

are the overlap integrals between the NMs. As
for DNLS with disorder, adding nonlinearity again
leads to a finite range interaction between the eigen-
states. The main difference from the disordered case
is that here, the linear spectrum is unbounded and
exact resonances are always present. Resonant nor-
mal form equations are indeed obtained by substi-
tuting ν + ν1 − ν2 − ν3 = 0 into Eq. (28). These
equations are not integrable [Krimer et al., 2009], in
contrast to the resonant normal form equations for
the disordered case [Flach, 2010]. As a consequence,
if at least two neighboring NMs are excited, the res-
onant normal form, having a connectivity similar to
the original lattice equations, allows spreading over
the whole lattice. Such a direct resonant interac-
tion mechanism takes place between the NMs both
inside and outside the wave packet.

2.2.2. Single site excitation

First, we study a single site initial excitation
ψl(0) = δl0. In that case the amplitudes in NM space
are φν(0) = Jν(2/E). The nonlinear frequency shift,
δ ∼ β, at site n = 0 should be compared with the
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Fig. 7. (a) The diagram of the three regimes of spreading in the parameter space (β, E) for Eq. (27). Empty and filled circles:
numerically obtained thresholds which separate the three different regimes I, II, III — lines connecting symbols are meant to
guide the eye for the boundaries. Black dashed line: threshold between II and III obtained from the dimer model. In the limit
of E → ∞, all lines merge to the asymptotic limit β ∝ E. (b) Single site excitation for E = 2. Second moment m2 versus time
in log–log plots for different values of β inside the interval where an explosive delocalization of the trapped regime occurs:
β = 8.15, 8.25, 8.5 [(o) orange; (g) green; (r) red]. β = 8 [(b), blue]: intermediate regime. β = 8.9 [(v), violet]: trapped regime.
Figure adapted from [Krimer et al., 2009].

two scales set by the linear problem: the eigenvalue
spacing E and the eigenvalue variation over a local-
ization volume ∆ ≡ EL (see Sec. 1.2). We found
three qualitatively different regimes of spreading
shown on the phase diagram in the parameter plane
of nonlinearity, β, and DC field, E, strengths [see
Fig. 7(a)]: (I) δ < E, (II) E < δ < ∆, (III) ∆ < δ.
In case (I), the nonlinear frequency shift is less
than the spacing between excited modes. There-
fore no initial resonance overlap is expected, and the
dynamics may evolve as that for β = 0 at least for
long times. In case (II), resonance overlap happens,
and the packet expands subdiffusively from the very
beginning. For case (III), δ tunes the excited site
out of resonance with the neighboring NMs. Reso-
nances with more distant NMs are possible, but the
overlap with these NMs is weaker the further away
they are. Therefore for long times the excited site
may evolve as an independent oscillator (trapping).

Let us discuss case (III) in more detail. For
E = 2 and β > 8.9, the single site excitation stays
trapped up to times t = 108 without significantly
spreading into any other site of the lattice (violet
curve in Fig. 7). Slightly lowering β we observe that
the excitation is trapped up to some time TE which
sensitively depends on β and changes by many
orders of magnitude e.g. between 102 to 107 in the
narrow interval β ∈ (8.05, 8.9) for E = 2 (Fig. 7).
For times t > TE , an explosive and spatially asym-
metric spreading is observed on a time scale of one

Bloch period TB . The packet spreads in the direc-
tion of NMs with larger eigenvalues, which pro-
vide the possibility of resonant energy transfer from
the single site excitation due to its positive non-
linear frequency shift δ. For about ten Bloch peri-
ods TB the packet shows Bloch oscillations, which
then quickly decohere. Finally the packet spreads
incoherently and subdiffusively. The explosion time
TE is not monotonously changing with β, which
indicates intermittency, i.e. the single site excita-
tion can be closer or further away from some reg-
ular structures in phase space. That distance may
in turn control the value of TE . For E = 2 and
β = 8 the packet spreads from scratch (blue curve
in Fig. 7).

It is worth noting, that the border between
regimes II and III can be approximated by a dimer
model (an estimate from below). Indeed, a dimer
model takes into account only one lattice site to
the right from initially excited site (corresponding
to the trapped state) and therefore describes the
asymmetric energy transfer during the explosion.
As for the disordered case, we observe that non-
linearity destroys integrability, introduces chaos,
and ultimately leads to a subdiffusive spreading, so
that the second moment grows as tα with α < 1.
Our preliminary numerical studies showed that the
exponent α is not universal and depends on the sys-
tem parameters. The reason is that spreading of the
wave packet takes place not anymore due to pure
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incoherent transfer but becomes a complicated mix-
ture of incoherent and coherent transfer processes.
The interplay of these two mechanisms is a subject
of our future studies.

2.2.3. Single mode excitation

A single mode excitation φν(t = 0) = δν,0 also
exhibits the three different regimes of spreading.
However, for small values of nonlinearity β a new
intriguing feature of the short time dynamics fol-
lows [Krimer et al., 2009]. Indeed, considering the
resonant normal form one can conclude that a sin-
gle mode excitation is the exact solution, so that
no other NM is going to be excited. However, the
full set of Eq. (28) will excite other NMs as well.
These small perturbations may stay small or start
to grow, depending on the stability of the sin-
gle mode solution. Performing the linear stability
analysis of the single mode excitation the stabil-
ity intervals, which affect the short and long time
dynamics, are obtained and observed upon variation
of the DC bias strength. In particular, if the single
mode excitation is launched within a stability win-
dow, we found that the wave packet is practically
not spreading up to long time scales. However, a
small change of the DC bias value E tunes the sys-
tem into an instability window leading to a subdiffu-
sive spreading on the accessible time scales, starting
at short time scales.

2.3. Nonlinear Aubry–André chains

In quasiperiodic systems, the localized–delocalized
transition discussed in Sec. 1.3 may be probed by a
nonlinear interaction. Just as in Eqs. (15) and (27),
this is done by adding a cubic term in the dynamics
of Eq. (7):

i
∂ψl
∂t

= ζ cos(2παl) · ψl − ψl+1 − ψl−1 + β|ψl|2ψl.
(30)

Unlike the two previously discussed cases, the
linear behavior of the second moment (introduced
in Sec. 2.1.1) in the Aubry–André model was shown
[Ketzmerick et al., 1997; Hiramoto & Abe, 1988] to
follow

m2(t;β = 0) =



t2 ζ < 2

t1 ζ = 2

t0 ζ > 2.

The nonlinear effect on the above packet spread-
ing has garnered much attention in recent years,
including experimental observations of the spread-
ing in both Kerr photonics [Lahini et al., 2009] and
ultracold atomic clouds in optic traps [Ringot et al.,
2000; Deissler et al., 2010]. In [Ng & Kottos, 2007],
the critical case of ζ = 2 was observed to have
short transient behaviors dependent on the non-
linearity before asymptotically displaying an expo-
nent similar to the linear behavior. In contrast,
in [Larcher et al., 2009] all ζ were investigated.
Larcher et al. additionally incorporated a lattice
phase shift, such that for Eq. (30), the potential
becomes cos(2παl) 	→ cos(2παl + θ). Starting from
single-site excitations, they were able to develop
the parametric space shown in Fig. 8. In this fig-
ure, three spreading regimes are found to be dic-
tated by both the nonlinearity and lattice phase.
The blue squares in the figure correspond to a
lattice phase of zero, while the red circles corre-
spond to a π phase. The first two regions display
(I) strong self-trapping (similar to the δ > 2 sec-
tion of Fig. 3), and (II) subdiffusive spreading,
but with discrete breather structures being seen.
The main interest is within the localizing region
(III), in which zero phases become self-trapped, and
π phases become subdiffusive — these dependen-
cies were hinted within [Johansson et al., 1995].
Larcher et al. then go on to investigate the expo-
nents in the moments and participations, much as

Fig. 8. Parametric space for nonlinear spreading in the
Aubry–André model. The blue squares are for an initial exci-
tation under a lattice phase θ = 0, while the red circles are
for an excitation under the phase θ = π. The three regimes
are discussed in detail within the text. Figure adapted from
[Larcher et al., 2009].
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done for the DNLS and KG models in [Flach et al.,
2009]. Throughout, the spreading still remains sub-
diffusive. Recent efforts have also seen experimen-
tal evidence to support such subdiffusive spreading
[Lucioni et al., 2010].

Almost all efforts in the Aubry–André model
have been done for a single “realization” of
the potential. However, to develop a universal
description of spreading, moment averaging over
realizations ought be considered — while there is no
randomness in Eq. (30), one can perhaps introduce
the idea of a “realization” by randomizing lattice
phase θ, or perhaps over various incommensurate
sets of α. As seen, particular attention needs to be
paid in choosing the lattice phase. With the intro-
duction of nonlinearity, the Aubry–André model
remains a cornucopia of study.

2.4. Quantum kicked rotor

Realizations of Bose–Einstein condensation of
dilute gases has opened new opportunities for
experimental study of dynamical systems in the
presence of many-body interactions. In the mean
field approximation, these many-body interactions
in the Bose–Einstein condensates are represented
by adding a nonlinear term in the correspond-
ing Schrödinger model equation [Benvenuto et al.,
1991]:

i
∂ψ

∂t
= −1

2
∂2ψ

∂θ2
− β̃|ψ|2ψ

+ k cos(θ)ψ
+∞∑

m=−∞
δ(t−mT ), (31)

where the notation is the same as Eq. (10), except
here with the new parameter β̃, which describes the
nonlinear coupling.

The influence of nonlinearity on quantum local-
ization in the nonlinear quantum kicked rotor
can be studied by direct numerical simulation
of the corresponding model, Eq. (31). The cor-
rect approach to approximate the evolution of
the nonlinear Schrödinger equation is to evalu-
ate the nonlinear term in the position represen-
tation [Benvenuto et al., 1991]. Namely, for the
numerical integration of Eq. (31), the lowest order
split method can be used and the evolution oper-
ator Û can be approximated by the time-ordered
product of the evolution operators over small time
steps T/L (with integer L) [Bandrauk & Shen,
1993]:

Û(T ) = exp(−ik cos θ̂)
L∏
j=1

exp
(
−iT n̂

2

2L

)

× exp

(
iβ̃

(
T

L

) ∣∣∣∣ψ
(
θ̂,
jT

L

)∣∣∣∣
2
)
. (32)

In this model, the phase is acquired at each instant
by the wavefunction, which involves all the Fourier
components, and the phase factor of the nth Fourier
component is (β̃/2π)

∑
m ψ̂

∗
m+nψ̂m. The typical val-

ues of the number of steps per period are between
8 · 105 and 5 · 106. Therefore, this model is com-
putationally quite expensive to study the effects of
strong nonlinearities and the dynamics of the sys-
tem over long time [Rebuzzini et al., 2005].

Another much simpler model of the quantum
kicked nonlinear rotor — which allows faster per-
formance and more efficient numerical computa-
tions — was introduced by Shepelyansky [1993].
The dynamics of this model is given by the following
map:

An(t+ T ) =
∑
m

(−i)n−mJn−m(k)Am(t)

× exp
(
−i1

2
Tm2 + iβ|Am|2

)
. (33)

This map is almost the same as that without non-
linearity, Eq. (13). The only difference is that the
change of the phase in the Fourier harmonics An
between two kicks, now depends on the amplitude
of the harmonics, ∆φm = β|Am|2. The parame-
ter of the nonlinear coupling β̃ in the nonlinear
Schrödinger equation (31) and the nonlinear param-
eter β in Eq. (33) are connected by the relation
β = T β̃/2π.

Numerical results of the quantum kicked rotor
model in the presence of nonlinearity show that
the dynamics is affected by nonlinearity. In the
resonant regime, where the parameter T is ratio-
nal, the nonlinearity only affects the prefactor
in the parabolic growth law, and the resonant
regime persists [Rebuzzini et al., 2005]. On the
other hand, in the localized regime (irrational T )
simulations demonstrate that nonlinearity destroys
quantum localization. Namely, in the presence of
strong enough nonlinearity, subdiffusive spreading
is observed [Shepelyansky, 1993]. This effect of non-
linearity in the quantum kicked rotor is similar to
those obtained in the models with disorder, as dis-
cussed in the previous sections. In the case of the
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quantum kicked rotor, the role of disorder is played
by the quasiperiodic sequence {(1/2)Tm2}, which
is obtained for irrational T . Replacement of this
quasiperiodic sequence with a truly random one
shows no change in the behavior of the system.
This favors the expectations that the influence of
nonlinearity can be described by the same theory
developed in the context of the models with dis-
order. Preliminary results show that the compact-
ness index ζ (see Sec. 2.1.1), which quantifies the
wave packet sparsity, oscillates around values of 12
for the quantum kicked rotor model. This means
that the wave packet spreads in a compact fash-
ion. In addition, preliminary results indicate differ-
ent subdiffusive spreading regimes with respect to
the values of the coefficient of nonlinearity β and
the strength of the kick k. We expect that these
results can be explained by the existence of dif-
ferent spreading regimes of the wave packet, as in
Sec. 2.1: the strong chaos, the weak chaos regime,
and the crossover regime between. Currently, our
recent efforts have been dedicated to establishing
more clear and reliable results.

3. Outlook

A variety of linear wave equations support wave
localization. Many of them were experimentally
studied in recent times. The localization phe-
nomenon relies on the phase coherence of waves.
Therefore, destruction of phase coherence —
dephasing — leads to a loss of wave localiza-
tion. Nonlinear wave equations are in general non-
integrable, and therefore admit dynamical chaos.
Dynamical chaos in turn leads to a loss of corre-
lations — and therefore dephasing. Consequently
wave propagation in nonlinear wave equations will
generically lead to delocalization. We discussed a
number of results on wave packet propagation which
support this conclusion. Nonlinearity is the result
of wave interactions, and a generic phenomenon in
many physical realizations as well. Therefore, future
experimental studies are expected to confirm these
predictions.

Besides wave packet propagation, conductivity
measurements are informative as well. In particu-
lar, the temperature dependence of the heat con-
ductivity has been recently related directly to the
properties of wave packet propagation [Flach et al.,
2011].

There are many future research directions
the mind can take. Extensions to higher lattice

dimensions are of interest. Two-dimensional lattices
are numerically feasible, while three-dimensional
cases need most probably the support of supercom-
puters. The interplay of nonlinearity with mobil-
ity edges and critical states can be expected to be
intriguing as well. Quantizing the above nonlinear
field equations remains a challenging enterprise.

Acknowledgments

The authors wish to acknowledge several fruit-
ful discussions with I. Aleiner, B. L. Altshuler, S.
Aubry, D. Basko, T. Bountis, S. Fishman, M. Ingus-
cio, M. V. Ivanchenko, R. Khomeriki, M. Larcher,
N. Li, G. Modugno, M. Modugno, V. Oganesyan,
A. Pikovsky, R. Schilling, M. Segev, D. Shep-
elyanksy, Y. Silberberg, A. Soffer, and W. Wang.
Ch. Skokos was partly supported by the European
research project “Complex Matter”, funded by the
GSRT of the Ministry Education of Greece under
the ERA-Network Complexity Program.

References

Abrahams, E. [1979] “Scaling theory of localization:
Absence of quantum diffusion in two dimensions,”
Phys. Rev. Lett. 42, 673.

Albert, M. & Leboeuf, P. [2010] “Localization by bichro-
matic potentials versus Anderson localization,” Phys.
Rev. A 81, 013614.

Albuquerque, E. & Cottam, M. [2003] “Theory of
elementary excitations in quasiperiodic structures,”
Phys. Rep. 376, 225.

Anderson, P. W. [1958] “Absence of diffusion in certain
random lattices,” Phys. Rev. 109, 1492.

Anderson, B. & Kasevich, M. [1988] “Macroscopic quan-
tum interference from atomic tunnel arrays,” Science
282, 1686.
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