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Zusammenfassung

Diese Arbeit behandelt dynamische Phänomene und Orientierungsübergänge, die durch

intensives Licht in homeotrop orientierten nematischen Schichten induziert werden. In

vielen Experimenten, an solchen Systemen, konnten zahlreiche interessante dynami-

sche Bereiche identifiziert werden. Jedoch wurden nur für einige Fälle systematische

Theorien entwickelt, die die beobachteten Phänomene beschreiben können. In anderen

Fällen gibt es nur vereinfachte Modelle mit begrenztem Anwendungsbereich.

In Kapitel 2 betrachte ich den Fall einer senkrecht einfallenden, zirkular polarisierten,

ebenen Lichtwelle. Ich habe eine Theorie aufgestellt, die die detaillierte Beschreibung

der beobachteten Bereiche der Direktordynamik und ihrer Übergänge ermöglicht. Die

erste Instabilität ist der Fréederickszübergang vom homeotropen zu einem reorien-

tierten Zustand mit kleiner Amplitude und gleichmäßiger Direktorpräzession um die

Schichtnormale. Mit zunehmender Lichtintensität verliert dieser Zustand seine Stabi-

lität in einer superkritischen Hopfbifurkation und eine neue Frequenz tritt im zeitlichen

Fourierspektrum auf. Dieses quasiperiodische Regime entspricht einer Kombination

aus Präzession und Nutation. Mit weiterer Erhöhung der Intensität verschwindet die-

ser Zustand bei einem kritischen Wert, bei dem die Nutationsperiode unendlich wird.

An diesem Punkt gibt es über eine homokline Bifurkation einen stark hysteretischen

Übergang zu einem Zustand mit starker Reorientierung. Der homokline Orbit ist vom

einfachsten Typ, bei dem ein Grenzzyklus mit einem Sattelpunkt kollidiert, der eine in-

stabile Richtung aufweist. Der neue Zustand entspricht einer gleichmäßigen Präzession

des Direktors, nun jedoch mit einer sehr langen Periode und großer Reorientierung.

Ich habe auch den Einfluss eines zusätzlichen statischen elektrischen Feldes auf das

dynamische Szenario untersucht.

In Kapitel 3 wird die Untersuchung auf elliptisch polarisiertes Licht verallgemeinert.

Das vollständige Bifurkationsdiagramm mit Lichtintensität und Elliptizität als Bifur-

kationsparameter wurde in den Bereichen berechnet, in der der rotierende Zustand

existiert. Ich habe gezeigt, daß für einen ziemlich kleinen Bereich der Elliptizität in der

Nähe vom zirkularen Fall der erste periodisch rotierende Zustand seine Stabilität in

iii



iv Zusammenfassung

einer superkritischen Hopfbifurkation verliert. Mit zunehmender Lichtintensität führen

bei festgehaltener Elliptizität verschiedene Übergangssequenzen schließlich zu einem

Zustand mit große Direktorreorientierung. Die Natur dieses stark reorientierten Zu-

standes wie auch die der Zwischenregimes hängt von der Elliptizität ab. Einige dieser

Bereiche, die bei geringeren Intensitäten erscheinen, wurden schon früher experimentell

und theoretisch untersucht. Eine vollständige Beschreibung, bis hin zum stark reorien-

tierten Regime, stand aber aus.

In der in den obigen Kapiteln entwickelten theoretischen Behandlung, wie auch in allen

anderen Studien, wurde das durch die Bewegung des Direktors erzeugte Geschwindig-

keitsfeld (”backflow”) vernachlässigt. In Kapitel 4 habe ich den Einfluss des backflows

auf das in Kapitel 2 beschriebene dynamische Szenario untersucht und dabei substanti-

elle quantitative Änderungen gefunden. Es stellt sich heraus, daß das quasiperiodische

Regime zu höheren Lichintensitäten verschoben wird und außerdem in einem größeren

Bereich existiert. Für den Zustand mit großer Direktorreorientierung habe ich eine un-

erwartete räumliche Oszillation des backflows senkrecht durch die Schicht gefunden.

Dies ist eine Folge der Interferenzmuster des Lichts in der Schicht. Tatsächlich werden

in der entwickelten Theorie erstmalig lichtinduzierte dynamische Phänomene aus den

vollständigen nematodynamischen Gleichungen abgeleitet. Damit könnte man erstmals

einen quantitativen Vergleich mit Experimenten mit transversal ausgedehntem Laser-

strahl durchführen.

Weiterhin wurde in allen früheren Untersuchungen mit eingestrahltem Licht in Form

einer ebenen Welle angenommen, daß die Direktorreorientierung nicht von den Ko-

ordinaten parallel zur Schicht abhängt, d.h., man hat ein eindimensionales Problem

betrachtet. In Kapitel 5 habe ich die von einer schräg einfallenden, linear polarisierten

ordentlichen Welle erzeugten Instabilitäten untersucht unter Zulassung von räumlichen

Variationen des Direktors in der Schichtebene und unter Einschluss des Falles eines

farbstoffdotierten Nematen. Wie schon vorher bekannt war, verliert der homeotrope

Zustand seine Stabilität für ausreichend kleine Einfallswinkel in einer stationären ho-

mogenen Pitchforkbifurkation. Ich habe gezeigt, daß der resultierende stationäre reori-

entierte Zustand seine Stabilität in einer inhomogenen, sekundären Hopfbifurkation mit

endlicher kritischer Wellenzahl verliert. Dies führt zur Bildung von laufenden Wellen

in der Schichtebene. Ihre Wellenlänge hängt vom Einfallswinkel und dem Verhältnis

der elastischen Konstanten ab und ist typischerweise mehrfach größer als die Breite der

Schicht.

Abschließend kann gesagt werden, daß, obwohl es systematische Theorien gibt, die qua-

litative Voraussagen für Experimente machen, es noch an quantitativer Übereinstim-

mung fehlt. Der wichtigste Grund dafür ist wahrscheinlich, daß die in den Experimenten
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benutzte Strahlbreite von der Ordnung der Schichtdicke ist, wohingegen in der theoreti-

schen Behandlung eine unendliche ebene Welle angenommen wird. Also sollte entweder

in der Theorie die endliche Ausdehnung des Laserstrahls Berücksichtigung finden oder

in den Experimenten sollten transversal ausgedehnte Laser verwendet werden. Erste-

res ist schwierig, insbesondere wenn auch noch der backflow einbezogen wird. Für das

letztere werden sehr leistungsstarke Laser benötigt, ausser man verwendet geeignet

farbstoffdotierte nematische Flüssigkristalle. Ein weiteres interessantes Probleme, das

in Zukunft angegangen werden könnte, betrifft den Fall, wo periodisch moduliert wird.
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Chapter 1

Introduction

1.1 Light induced orientational instabilities in ne-

matics

Liquid crystals (LCs) demonstrate a rich variety of interesting optical phenomena which

have been studied intensively during the last two decades. A nematic LC behaves op-

tically as a uniaxial anisotropic medium with the optical axis along the local molecular

orientation described by the director n(r, t) (note that n and −n are indistinguishable).

Moreover, when light propagates through the nematic, its electric field exerts a torque

on the molecules which can induce molecular reorientation. The director reorientation

leads to a change of the optical properties of the LC and, as a consequence, the light

polarization is changed as it propagates through the layer. Such a feedback between

the light and the nematic gives rise to interesting nonlinear dynamical phenomena [1,2].

The optical electric field can be written as Ereal(r, t) = 1/2[E(r, t)e−iωt +c.c.], where ω

is the frequency of light and the complex amplitude E(r, t) varies slowly in time on the

scale 1/ω. Averaging over a time that is long compared with the period of the light

wave, the optical torque acting on the director can be written as [2]

τ =
εa

16π
(n · E∗)(n × E) + c.c. , (1.1)

where εa = ε‖− ε⊥ is the dielectric anisotropy and ε⊥ (ε‖) is the dielectric permittivity

(at optical frequency) perpendicular (parallel) to n.

One can distinguish between different cases where the initial torque τ is nonzero or

zero. This is determined by the mutual alignment of the polarization of the incident

light and the initial director orientation (geometry of setup). One can see from Eq.

1



2 Introduction

Figure 1.1. Different geometries of setups with a threshold [a),c)] and without threshold
[b),d)]: a) [ b)]: linearly polarized incident light with ordinary (extraordinary) wave only;
c), d): elliptically (or circularly) polarized incident light.
The director n is perpendicular to the substrates (homeotropic alignment). k0 is the
incident wavevector.

(1.1) that the initial torque is zero, τ = 0, if n‖E or n ⊥ E and, at first sight, it

might seem that such a field cannot lead to director reorientation. However, it turns

out that above a certain light intensity the initial state can become unstable and due

to thermal fluctuations the director reorients. This is the so-called Light Induced

Fréedericksz Transition (LIFT). Obviously, if initially τ 6= 0, the director will change

its initial orientation for any arbitrarily small light intensity and there is no threshold.

In Fig. 1.1 some different geometries of light incident on a nematic layer that has

homeotropic alignment (the director is perpendicular to the plane of the layer) are

shown. A cell consists of a nematic LC sandwiched between two substrates (typically

glass plates). In both cases shown in Fig. 1.1 a), b) the incident light is linearly

polarized, but in the first case the polarization is perpendicular to the plane containing

the optical axis defined by the director n and the wavevector k0 (ordinary wave) and
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in the second case the polarization lies in this plane (extraordinary wave). In Fig. 1.1

c), d) the light is incident perpendicularly [c)] or at a small oblique angle [d)] on a

layer and has circular (or elliptical) polarization. As is seen from Figs. 1.1 a), c) the

initial torque τ = 0 (since n · E = 0). Thus one may expect a LIFT. In contrast,

for the geometries depicted in Figs. 1.1 b), d) the initial torque τ 6= 0 and thus,

there is no LIFT (the director will be distorted for any arbitrary small field). The two

geometries depicted in Fig. 1.1a), c) are of particular interest and have been studied

very intensively, both experimentally and theoretically. They will be considered at

length in this thesis.

In Fig. 1.1c) a circularly polarized light wave incident perpendicularly on a thin layer

of nematic LC (with a homeotropic orientation) is shown. This geometry will be

considered in Chapter 2. In this case the LIFT is observed to be weakly hysteretic,

and above threshold the molecules undergo a collective rotation [3] (that corresponds

to a uniform precession of the director). This effect is well understood in the frame of a

purely classical (hydrodynamic) approach [3]. It also can be interpreted in a quantum

picture as spin angular momentum transfer from the light to the medium and is called

self-induced stimulated light scattering . Since collective molecular rotation dissipates

energy, the light beam has to transmit part of its energy to the medium. As the pure

nematic LC is a transparent medium (no absorption) this energy loss leads to a red

shift of a part of the light beam [4]. The mechanism can be described as follows: each

scattered photon has its helicity reversed and thus transfers an angular momentum

of 2~ (that is perpendicular to the layer) to the medium. Moreover its energy is

lowered by an amount ~∆ω. Thus p photons per unit time produce a constant torque

τz = 2~p, acting on the medium, which induces a collective molecular precession.

This torque is balanced by the viscous torque. The angular velocity of the uniform

precession Ω is related to a red shift ∆ω by the simple formula ∆ω = 2Ω. This formula

can be derived from energy conservation using that i) p photons loose per unit time

the amount of energy ~∆ωp ; ii) the work made by the torque τz on the director is

τzΩ = 2~pΩ = ~∆ωp . The fact that in the final relation ~ disappears, shows that one

can obtain this formula through a classical approach [5].

In general the angular momentum of the light beam consists of two parts: a spin part

associated with polarization [6] and an orbital part associated with spatial distribution

[7]. However, if the spatial distribution in the plane of the layer is supposed to be

homogeneous i. e. when one deals with a plane wave approximation, as will be done

in this thesis, then the orbital part is zero. In this context it may be interesting to

note that laser light with a Laguerre-Gaussian amplitude distribution can be shown

to have a well-defined orbital momentum [8]. In recent publications the influence of a
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finite beam diameter (playing the role of an additional control parameter) [9] and of

a nontrivial beam profile [10, 11] were studied. Both of these factors lead to new and

distinct regimes of complex behavior.

In [5] a theoretical and experimental investigation of the dynamical behavior of the

system for the region of higher intensities was reported. The authors of [5] observed

a further discontinuous transition with large hysteresis from a precession regime with

small reorientation amplitude occurring above the LIFT to one with large reorientation.

The frequency of the large amplitude precession was found to be much smaller than

the one just above the LIFT and to exhibit rapid variations with the incident intensity

reaching zero at roughly periodic intervals. In this work the authors presented an

approximate model that can describe qualitatively both regimes of uniform director

precession and also presented clear experimental evidence of the frequency reduction

in the second regime. The nature of the transition from one regime to the other

was, however, not understood in the framework of this model. More recently, the

authors [12, 13], identified experimentally a new continuous transition from the small-

amplitude uniform precession state to a more complex state with a precession-nutation

type motion of the director. This intermediate regime with a more complex director

motion and a sequence of transitions between different regimes will be a subject of

Chapter 2.

If the incident light is elliptically polarized, the dynamics of the director become even

more complex compared to the circular case [14,15]. It turns out that the regime with

a precession-nutation type motion of the director can also be realized in the elliptic

case and this is the subject of Chapter 3.

A simplification used in all previous theoretical studies is the assumption that the

flow velocity v in the LC is zero. Actually one has to include the equation for the

velocity v and consider the coupled director-velocity equations in the framework of the

well-established hydrodynamic approach (see e. g. H. Pleiner and H. Brand in [16]).

Indeed, director reorientation itself generates flow, even in the absence of external

forces acting on v. This is the so-called backflow effect. In some simple situations

where the director does not deviate strongly from the initial alignment, backflow can

be taken into account approximately by renormalization of the rotational viscosity γ1

in the director equations. I will consider the influence of the backflow effect on the

director dynamics properly in Chapter 4. To our knowledge this is the first time that

backflow is explicitly included for a nematic driven by light.

One of the assumptions made in all theoretical models mentioned above is, that the cell

is illuminated homogeneously over an area whose linear extension is much larger than
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the thickness of the layer. In this case we can also assume that the director depends

only on the coordinate across the cell and the light inside the nematic can be treated

as a plane wave. However, it is quite difficult to realize such conditions in experiments

because one needs powerful lasers, since the LIFT occurs at an intensity level of a

few kW/cm2. On the other hand, the threshold for the LIFT in dye-doped nematic

LCs turns out to be up to more than two orders of magnitude lower than in a pure

nematic [17]. This allows the spot diameter of the light to be increased and to become

much larger than the thickness of the layer. Thus a large aspect ratio system can be

realized. Now, the light absorption of the dye becomes significant at optical frequencies,

which can lead to considerable heating and even melting of the nematic [18].

The nature of this enormous threshold reduction by doping with dyes was the subject

of numerous studies [19–22]. From a macroscopic point of view, the dye leads to an

enhancement of the optical torque acting on the molecules that can be written as

[compare with Eq. (1.1)]:

τ =
ξeff

16π
(n · E∗)(n × E) + c.c. , (1.2)

where ξeff = εa + ζ. Here ζ describes phenomenologically the effect of certain dye

dopants (ξeff = εa in a pure LC) and can be both positive and negative depending on

dye concentration, molecular structures of both host and dye materials, on the wave-

length of light, and on temperature [19,22]. The microscopic origin of the enhancement

is not yet completely clarified. A model has been proposed in [22].

The dye-doped case is emphasized when studying in Chapter 5 the geometry where a

linearly polarized ordinary light wave is incident at a small oblique angle on a thin layer

of homeotropically oriented nematic LC [see Fig. 1.1a)]. In this case the LIFT can be

shown to be continuous [23, 24]. With further increase of the intensity, periodic and

irregular motion of the director was found in early experiments [25–27]. Subsequent

experiments were devoted to an exploration of this irregular regime [27–32]. Observa-

tions show that the initial oscillations grow and become more complex as the intensity

of the incident light increases, eventually turning chaotic [27, 29, 31]. A theoretical

model involving a few discrete reorientation modes actually predicts a complex route

to chaos via gluing bifurcations [33,34]. Clear experimental evidence for the occurrence

of the first gluing bifurcation was presented in [35, 36]. In these theoretical studies all

dynamical quantities were assumed to be spatially independent along the layer plane.

However, since our system is spatially extended in the plane of the layer and has broken

reflection symmetry one actually expects the appearance of travelling waves that alter

the bifurcation scenario. This problem is studied in Chapter 5 with special emphasis

on the dye-doped case.
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1.2 Theoretical model

1.2.1 Director equations

The director equations for the steady state can be derived using the variational principle

according to which the free energy has a minimum at equilibrium with respect to all

variations of the director n. When the transient behavior is studied then the equations

for the director are obtained using the fact that the dissipation is equal to the decrease

in free energy [37].

We consider strong anchoring of the nematic at the boundaries (i. e. the orientation

of the director is fixed at the boundaries). Since we deal with light the magnetic

anisotropy can be neglected. Thus the expression for the density of the free energy of

the dye-doped nematic LC consists only of elastic and electrical parts:

F =
K1

2
(∇ · n)2 +

K2

2
(n · ∇ × n)2 +

K3

2
(n ×∇× n)2 − ξeff

16π
| n · E |2, (1.3)

where K1, K2, K3 are respectively the splay, twist and bend elastic constants of the

LC [37]. ξeff is the same enhancement factor that appears in the optical torque acting

on the director due to dye dopants [see Eq. (1.2)]. Note that ξeff = εa in pure LC. In

the absence of a velocity field the dynamical equations of motion for the director are

given by:

γ1∂tn = −δ⊥ h , (1.4)

where γ1 is a rotational viscosity and h is the molecular field obtained by calculating

the variational derivatives of the free energy density F :

hi =
δF

δni
=
∂F

∂ni
− ∂j

(
∂F

∂ni,j

)
, i = x, y, z . (1.5)

It should be noted that the variational derivatives are carried out by considering the

electric field E as fixed. Since the relation n2 = 1 has to be fulfilled at all times, the

molecular field has to be projected onto the plane perpendicular to the director by

using of δ⊥ij = δij − ninj introduced in Eq. (1.4). Eqs. (1.4) can also be interpreted as

a torque balance among the elastic, electric and viscous torques [1].

We consider a plane wave incident perpendicularly or at a small oblique angle β0 on a

layer of pure or dye-doped nematic LC which has initially homeotropic alignment [see

Fig. 1.1a),c)]. We choose the Cartesian coordinates in such a way that (x,y) lies in

the plane of the layer and z is perpendicular to it. We first assume that the director
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components depend only on z, t. In this case the partial differential equations for nx

and ny following from Eq. (1.4) have the form:

γ1∂tnx = (K2n
2
y +K3n

2
z) [∂2

znx + 2nx(∂znx)
2] − nx[K2ny∂

2
zny +K1nz∂

2
znz] +

2nx[K3n
2
z −K2(1 − n2

x)](∂zny)
2 + 2ny[K2(1 − 2n2

x)∂znx −K3nxnz∂znz]∂zny +

(1.6)

2K3nz(1 − n2
x)∂znx∂znz +

ξeff

16π

{
2nx[(1 − n2

x)ExE
?
x − nynz(E

?
yEz + EyE

?
z )]+

(1 − 2n2
x)[ny(E

?
xEy + ExE

?
y) + nz(E

?
xEz + ExE

?
z )] − 2nx(n

2
yEyE

?
y + n2

zEzE
?
z )

}
,

γ1∂tny = (K2n
2
x +K3n

2
z) [∂2

zny + 2ny(∂zny)
2] − ny[K2nx∂

2
znx +K1nz∂

2
znz] +

2ny[K3n
2
z −K2(1 − n2

y)](∂znx)
2 + 2nx[K2(1 − 2n2

y)∂zny −K3nynz∂znz]∂znx +

(1.7)

2K3nz(1 − n2
y)∂zny∂znz +

ξeff

16π

{
2ny[(1 − n2

y)EyE
?
y − nxnz(E

?
xEz + ExE

?
z )]+

(1 − 2n2
y)[nx(E

?
xEy + ExE

?
y) + nz(E

?
yEz + EyE

?
z )] − 2ny(n

2
xExE

?
x + n2

zEzE
?
z )

}
.

Note that the equation for ny can be obtained from the one for nx by interchanging

the indices x and y. The z component of the director nz can then be obtained from

the condition n2 = 1. The strong homeotropic anchoring at the boundaries yield the

following conditions:

nx(0) = nx(L) = ny(0) = ny(L) = 0 . (1.8)

1.2.2 Equations for the light propagation

In oder to solve Eqs. (1.6,1.7) for the director we have to determine the electric

field which is governed by Maxwell’s equations. These equations contain the dielectric

permittivity tensor which depends on the director components. It should be noted

that the characteristic time of the director motion is many orders of magnitude longer

than the period of the light wave (∼ 1015 − 1016). This fact allows one to consider the

instantaneous profile of the director as constant with respect to the light.
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Maxwell’s equations can be written for a nonmagnetic material in the absence of any

currents and charges as:

∇× H =
1

c
ε
∂E

∂t
, ∇ · (εE) = 0 (1.9)

∇× E = −1

c

∂H

∂t
, ∇ · H = 0 (1.10)

with the complex dielectric tensor

εij = (ε⊥ + iγ⊥) δij + (εa + iγa)ninj, (1.11)

where εa = ε‖ − ε⊥ is the real part of the dielectric anisotropy and ε⊥ (ε‖) is the

dielectric permittivity (at optical frequency) perpendicular (parallel) to n.

In Eq. (1.11) γa = γ‖ − γ⊥, where γ⊥ and γ‖ are the imaginary parts of the dielectric

permittivity for E perpendicular and parallel to n, respectively. They are usually

negligible in pure LCs and describe the absorption effect by the dye.

We assume that the diameter of the laser beam is much larger than the thickness of

the layer and consider the case when the director depends only on z, t. This means

that also the components of the dielectric tensor depend only on z and the light inside

the nematic can be treated as a plane wave. We write the electric and magnetic fields

in the form:

E(r, t) =
1

2
(E(z, t)ei(kxx+kyy)e−iωt + c.c.), (1.12)

H(r, t) =
1

2
(H(z, t)ei(kxx+kyy)e−iωt + c.c.)

and choose the (x, z) plane as the plane of incidence (it contains the surface normal

and the incident wavevector). Thus we have for the components of the wavevector

kx, ky:

kx = s0k0, ky = 0, (1.13)

where k0 = ω/c is the wavenumber in vacuum and s0 = sin(β0) with β0 the angle

of incidence. Note that E(z, t),H(z, t) in (1.12) are complex amplitudes which vary

slowly in time compared to ω−1, as a result of slow director motion. Eventually the

first equation (1.9) becomes:




0 −∂z 0

∂z 0 −ikx

0 ikx 0






Hx

Hy

Hz


 = −iω

c
ε



Ex

Ey

Ez


 . (1.14)



Introduction 9

Analogously for the first equation (1.10):



0 −∂z 0

∂z 0 −ikx

0 ikx 0






Ex

Ey

Ez


 = i

ω

c



Hx

Hy

Hz


 . (1.15)

Hz and Ez can be straightforwardly expressed by the other components using the last

equation given by Eqs. (1.14) and Eqs. (1.15):

Hz = s0Ey, Ez = − s0

εzz
Hy −

εxz

εzz
Ex −

εyz

εzz
Ey. (1.16)

It can now be shown that the divergence equations in Eqs. (1.9) and Eqs. (1.10) are

automatically fulfilled.

Finally, Eq. (1.16) is used in Eqs. (1.14,1.15) to write the differential equations for the

other components of the fields in the so-called Berreman formalism [38]:

dΨ̄

dz
= ik0DΨ̄, (1.17)

where

Ψ̄ =




Ex

Hy

Ey

−Hx


 (1.18)

and

D =




−εxzs0

εzz
1 − s2

0

εzz
−εyzs0

εzz
0

εxx −
ε2

xz

εzz
−εxzs0

εzz
εxy −

εxzεyz

εzz
0

0 0 0 1

εxy −
εxzεyz

εzz
−εyzs0

εzz
εyy −

ε2
yz

εzz
− s2

0 0




. (1.19)

The experimentally measurable ordinary and extraordinary indices no, ne and absorp-

tion coefficients αo, αe are related with the dielectric permittivites in Eq. (1.11) as

follows (see also Appendix A):

no = Re
√
ε⊥ + iγ⊥, ne = Re

√
ε‖ + iγ‖

(1.20)

α⊥ = 2k0 Im
√
ε⊥ + iγ⊥, α‖ = 2k0 Im

√
ε‖ + iγ‖ .
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Assuming that γ⊥/ε⊥, γ‖/ε‖ � 1 and neglecting the terms of the order of (γ⊥/ε⊥)2, (γ‖/ε‖)
2

the following inverse relations can be obtained:

ε⊥ = n2
o, εa = n2

e − n2
o, γ⊥ =

α⊥no

k0
, γa =

α‖ne − α⊥no

k0
. (1.21)

Finally we have a set of four first-order ordinary differential equations (ODEs) Eqs.

(1.17) for the light propagation inside the LC that are equivalent to a set of two second-

order ODEs for the components of the electric field Ex, Ey. The initial conditions at

z = 0 are defined by the intensity and polarization of the incident light.



Chapter 2

Nonlinear reorientation dynamics

induced by circularly polarized

light in nematics

The reorientation dynamics of a homeotropically aligned nematic liquid crystal film

excited by a circularly polarized beam at normal incidence is investigated with the

intensity of the incident light regarded as the control parameter. The secondary insta-

bility above the optical Fréedericksz transition threshold is shown to be a supercritical

Hopf bifurcation leading to quasi-periodicity while the discontinuous transition from

the quasi-periodic regime to a uniform precession regime with large reorientation is

identified as a homoclinic bifurcation.

2.1 Theoretical model

We consider a circularly polarized plane wave incident perpendicularly on a layer of

nematic LC that has initially homeotropic alignment (with strong homeotropic an-

choring at the boundaries). The light is polarized in the plane of the layer [the (x,y)

plane] and propagates along the positive z-axis (see Fig. 2.1). We assume that the

diameter of the laser beam is much larger than the thickness of the layer, and consider

the case when the director depends only on z, t. Then the light inside the nematic can

be treated as a plane wave. We introduce the spherical angles Θ(z, t) and Φ(z, t) to

describe the director

n = (sin Θ cos Φ, sin Θ sin Φ, cos Θ) . (2.1)

11
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z

x

y 

0n

0 L

E0

LC

n0

n

Φ
Θ

Figure 2.1. Geometry of the setup: circularly polarized light incident perpendicularly
on a nematic layer with the director n0 ‖ z (homeotropic state). The components of the
director n are described in terms of the angles Θ,Φ (Θ = 0 in the homeotropic state).

To obtain the electric field, we use the approach when the light propagation inside LC is

described in terms of ordinary and extraordinary waves (see Appendix A). In this case

the electric field is governed by Eqs. (A.15) for the amplitudes Ao, Ae that are related

with Ex, Ey by (A.19). Note that Eqs. (A.15) remain unchanged after introducing the

dimensionless length z → zπ/L except k0 is transformed to dimensionless wavevector

k0 → k0L/π.

The boundary conditions for the amplitudes Ao, Ae (normalized to the amplitude of

the incoming light) at z = 0 are given by Eqs. (A.17) when substituting χ = π/4

(circular polarization):

|Ae0|2 = |Ao0|2 =
1

2
, Ae0A

?
o0 = − i

2
. (2.2)

We introduce the phase delay induced by the nematic up to a certain distance:

α(z) = k0

z∫

0

(
√
λe −

√
λo)dz ≡ k0

√
ε⊥

z∫

0



√

(εa + ε⊥)

ε⊥ + εa cos2 Θ
− 1


 dz (2.3)

and the phase delay induced by the whole layer ∆ ≡ α(z = π) defined in normalized z

[see Eqs. (A.10,A.16)]. As is seen from (2.3) ∆ depends on Θ only. Note that ∆ has

a direct experimental interpretation since the quantity ∆/2π represents roughly the

number of self diffraction rings in the far field [24].

We may substitute now the expression of the director (2.1) into Eqs. (1.6,1.7) to derive

a set of two PDEs in terms of Θ and Φ. At this step it is convenient to separate the

time derivatives on Θ and Φ that appear in these equations. Multiplying the equation

that comes from Eq. (1.6) by cos Φ and that from Eq. (1.7) by sin Φ and then adding
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them the PDE for Θ can be derived. In order to get the PDE for Φ one has to multiply

Eq. (1.7) by cos Φ and Eq. (1.6) by sin Φ and then subtract them. We then introduce

the amplitudes Ao, Ae and the phase factor α(z) into the electric terms of the equations

according to Eqs. (A.19) and also make use of Eq. (A.5). Finally the equations for Θ

and Φ are given by:





∂tΦ = LΦ

∂tΘ = LΘ

(2.4)

with

LΦ =
1

sin2 Θ

∂

∂z

[(
1 − (1 − k2) sin2 Θ

)
sin2 Θ ∂zΦ

]
+ 2ρ

λe

λo
Re

[
AeA

?
oe

iα(z)
]

LΘ =
(
1 − (1 − k1) sin2 Θ

)
∂2

zΘ − (2.5)

sin 2Θ

2

[
(1 − k1)(∂zΘ)2 +

(
1 − 2(1 − k2) sin2 Θ

)
(∂zΦ)2 − 2ρ

(
λe

λo

)2

|Ae|2
]
,

where k1 = K1/K3 and k2 = K2/K3. In Eq. (2.4), time t is normalized to the

characteristic relaxation time τ of the director and ρ = I/Ic is the dimensionless

incident light intensity, with

τ =
γ1L

2

π2K3
, Ic =

2π2

L2

c(ε⊥ + εa)K3

εa
√
ε⊥

, (2.6)

where γ1 is the rotational viscosity 1 and c is the velocity of light in vacuum. It will be

demonstrated in Sec. 2.2 that Ic has a meaning of the threshold intensity of the light

induced Fréedericksz transition (LIFT) for circularly polarized light at perpendicular

incidence. Note that in this case the homeotropic state looses its stability at an intensity

two times higher than that for linearly polarized light.

Alternatively, Eqs. (2.4) can be obtained by direct substitution of the representation

(2.1) into the free energy (1.3) and taking the variational derivatives with respect to

Θ and Φ. In that case the projection operator will not be needed in Eq. (1.4).

The boundary conditions for Θ and Φ are (strong homeotropic anchoring):

∂zΦz=0,π(t) = 0, Θz=0,π(t) = 0 . (2.7)

It should be noted that the coupled director and field equations (2.4), (A.15) together

with the boundary conditions (2.2), (2.7) are invariant with respect to rotations around

1In a more elaborate treatment the velocity field has to be included, see Chapter 4.
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the z-axis, namely to the change

Φ → Φ + δΦ (2.8)

as a consequence of isotropy in (x, y) plane.

2.2 Linear stability analysis of the basic state

We performed a linear stability analysis around the homeotropic state for which Θ = 0

and Φ is some undefined constant. Φ is undefined because in this representation ∂zΦ

is zero at the boundaries [see Eqs. (2.7)] but not the angle itself. When the light

propagates through the LC its polarization remains unchanged and the phase delay

∆ induced by the layer is zero. The amplitudes Ao, Ae coincide with the boundary

conditions (2.2).

We linearize the equation for Θ [see Eqs. (2.4)] around the homeotropic state. Straight-

forward calculations give:

∂tΘ = ∂2
zΘ + 2ρΘ|Ae0|2 ≡ ∂2

zΘ + ρΘ . (2.9)

We look for solutions satisfying the boundary conditions Θ|z=0,π = 0 in the form

Θ(z, t) =
∑

n=1

Θne
σnt sinnz (2.10)

and get the classical result for the growth rate σ̃n = σn/τ

σ̃n =
ρ− n2

τ
. (2.11)

One can make two important conclusions from Eq. (2.11), namely i) the damping

factor is τ ; ii) if the field overcomes the value ρ = 1 the homeotropic state becomes

unstable.

The angle Φ is of arbitrary value for the homeotropic state and, as a consequence,

drops out from the equation for Θ in linear approximation.
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2.3 Simulations

We may expand Θ and Φ with respect to z in systems of orthogonal functions which

satisfy the boundary conditions (2.7):

Θ =
∞∑

n=1

Θn(t)Vn(z) (2.12)

Φ ≡ Φ0(t) + Φd(z, t) = Φ0(t) +
∞∑

n=1

Φn(t)Un(cos z) ,

where Vn(z) and Un(cos z) are the Chebyshev polynomials of the second kind [39]

Vn(z) = sin nz, Un(cos z) =
sin(n+ 1)z

sin z
(2.13)

and are normalized as:

π∫

0

dz Vm(z)Vn(z) =

π∫

0

dz Um(cos z)Un(cos z) sin2 z =
π

2
δmn . (2.14)

The zeroth mode Φ0(t) in Eq. (2.12) does not depend on z and describes a pure rotation

of the director (without elastic distortion) around the z-axis while Φd(z, t) corresponds

to the twist distortion. After substituting the expansions (2.12) into Eqs. (2.4) and

projecting on the modes of expansion (Galerkin method), a set of coupled nonlinear

ODEs for the modes Θn(t),Φn(t) is obtained:





dΦn

dt
= Gn(Θ1,Θ2, ...; Φ1,Φ2, ...),

n = 1, 2, ...
dΘn

dt
= Fn(Θ1,Θ2, ...; Φ1,Φ2, ...)

(2.15)

As a result of isotropy, the ODE for Φ0(t) is decoupled from the rest and from the

boundary conditions Eqs. (2.2), (2.7) [only ∂zΦ appears in these equations]:

dΦ0

dt
= G0(Θ1,Θ2, ...; Φ1,Φ2, ...) . (2.16)

The infinite set of ODEs given by Eqs. (2.15) is reduced to a finite one by truncating

the mode expansion for Θ and Φ. We then solved it using the standard Runge-Kutta

method and chose the number of modes such that the accuracy of the calculated director

components was better than 1%. Note that the ODEs for Ao, Ae [see Eqs. (A.15)] have

to be solved dynamically at each step of numerical integration for time t.
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When Θn and Φn do not depend on t [dΦn/dt = dΘn/dt = 0], the angular velocity

dΦ0/dt has a constant value and the director precesses uniformly around the z-axis

with a frequency f0 defined as

f0 =
1

2π

dΦ0

dt
. (2.17)

In this case, the problem is significantly simplified. In fact, instead of solving a system

of evolution equations for Φn(t) and Θn(t), we are now faced with a set of nonlinear

algebraic equations. After solving them numerically and substituting Φn and Θn into

Eq. (2.16), the frequency f0 of the uniform precession can be found.

The preceding discussion holds only for circularly polarized light since for an elliptically

polarized light the rotational invariance given by Eq. (2.8) is broken. This however

considerably enriches the dynamics [14, 15, 40].

In the calculations, we used the material parameters for the nematic E7 (at room

temperature): K1 = 11.09×10−7 dyn, K2 = 5.82×10−7 dyn, K3 = 15.97×10−7 dyn [15],

ne = 1.746, no = 1.522 [41] (refractive indices of the ordinary and extraordinary

light, respectively), λ = 532 nm (wavelength of laser), γ1/K3 = 106 s cm−2 [42]. The

calculations were made for a layer of 100 µm thickness. For these parameters Ic '
2.6 kW/cm2, τ ' 10 s.

2.4 Classification of the dynamical regimes

This section gives a brief overview of the dynamical regimes occurring in the system,

and they will be discussed in detail in subsequent sections. In Fig. 2.2, the phase delay

∆/2π (a measure of the amplitude of reorientation) is plotted versus the normalized

intensity ρ. The solid lines represent stable uniform precession (UP) states, i.e. f0 =

const [see Eq. (2.17)], while the dashed lines correspond to precession states that are

unstable. The region in gray corresponds to a nonuniform precession (NUP) where

nutation (d∆/dt 6= 0) is coupled to precession. In this regime, the lower and the upper

lines that define the region in gray correspond to the minimum and maximum values

taken by ∆ during its oscillation.

The optical Fréedericksz transition occurs at ρ = 1 where the system settles to a

uniform precession state with a small reorientation amplitude (∆ ∼ π or equivalently

Θ2 � 1) labeled UP1. Decreasing the intensity from the UP1 regime, the system

switches back to the unperturbed state at ρ = ρ∗1 ' 0.88. When the intensity is

increased above the LIFT threshold, the UP1 looses its stability at ρ = ρ2 ' 1.45



2.4. Classification of the dynamical regimes 17

Figure 2.2. (a) ∆/2π versus ρ in a logarithmic scale for ρ < 2 and ∆ < 50π. (b) ∆/2π
versus ρ in a linear scale for ρ < 4 and ∆ < 3π. Solid (dashed) curves correspond to stable
(unstable) solutions.
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Table 2.1. Calculated values of the thresholds ρ2 versus modes number NΘ and MΦ.

NΘ = 1 NΘ = 2 NΘ = 3 NΘ = 4 NΘ = 5

MΦ = 1 — — — — —

MΦ = 2 — — — — 1.52

MΦ = 3 1.66 — 1.46 1.46 1.45

MΦ = 4 1.63 — 1.45 1.45 1.45

MΦ = 5 1.63 — 1.45 1.45 1.45

Table 2.2. Calculated values of the thresholds ρ3 versus modes number NΘ and MΦ.

NΘ = 1 NΘ = 2 NΘ = 3 NΘ = 4 NΘ = 5

MΦ = 1 — — — — —

MΦ = 2 — — — — 2.35

MΦ = 3 2.07 — 1.76 1.78 1.77

MΦ = 4 2.07 — 1.75 1.79 1.77

MΦ = 5 2.02 — 1.74 1.77 1.75

where the NUP regime takes over. Subsequently the NUP state looses stability at

ρ = ρ3 ' 1.75 where the system abruptly switches to a uniform precession with a large

reorientation amplitude (∆ � 1 or equivalently Θ2 ∼ 1) labeled UP2. Decreasing the

intensity in the UP2 regime, the system switches back to the UP1 regime at ρ = ρ∗3 '
1.09. From Fig. 2.2 b), which shows the entire UP1 regime, we see that the unstable

branch makes a loop and connects with the other unstable uniform precession branch,

which we will call UPS and which is connected with UP2. Thus, for ρ > ρ4 ' 3.58 one

is left with only UP2.

For different orders of expansion (NΘ,MΦ), we have calculated the threshold for the

continuous transition ρ = ρ2 where nutation appears (∂tΘ 6= 0), and the threshold for

the discontinuous transition ρ = ρ3 where the system abruptly bifurcates towards a

large reorientation regime (see Sec. 2.9). The corresponding calculations are summa-

rized in Tables 2.1 and 2.2 for different numbers of modes (NΘ,MΦ). The values for ρ2

and ρ3 converge as NΘ and MΦ become large enough. An empty entry indicates that

the transition is missing in the bifurcation scenario calculated with (NΘ,MΦ). One

can see that it is enough to retain only a few modes for each pair of angles to describe

the sequence of bifurcations accurately. All the calculations have been done with six

modes for both angles Θ and Φ.
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A comparison between theory and experiment will be presented in the next sections
2. In the experiment the total intensity of the central part of the beam emerging from

the sample, Icenter, and the intensities corresponding to the vertical and horizontal

components of the electric field, Ix and Iy (Icenter = Ix + Iy) were measured [43].

As explained in Ref. [9], the behavior of the signal Icenter(t) is qualitatively similar

to that of the phase delay ∆(t) [see Eq. (2.3)] whereas the behavior of the signal

ix(t) ≡ Ix/Icenter and iy(t) ≡ Iy/Icenter can be compared to that of the calculated

intensity of the x and y-component of the electric field of the light at the output of

the sample, Ix(t) = |Ex(z = L, t)|2 and Iy(t) = |Ey(z = L, t)|2 respectively. Since

ix(t) = 1− iy(t) these time series possess the same dynamical information and we shall

refer to any of these quantities as i(t).

2.5 First regime of uniform director precession

As demonstrated in [3] the homeotropic state remains stable when the incident light

intensity is below some critical value (ρ1 = 1 in normalized units). Above the threshold

ρ1 the director starts to precess uniformly with a frequency f0 [see Eq. (2.17)] around

the z-axis (UP1). The trajectory in the (nx, ny) plane is a circle. In a coordinate

system that rotates with frequency f0 around the z axis the trajectory in the (nx, ny)

plane is just a fixed point. The frequency of precession f0 is approximately defined by

Eq. (2.27) (see also [5]).

As is seen from Fig. 2.3 at ρ = ρ1 we deal with a discontinuous transition via subcritical

Hopf bifurcation with hysteresis. If one starts from the UP1 state and the intensity ρ

is decreased, the director switches back to the homeotropic state at ρ?
1 ≈ 0.88 where a

saddle-node bifurcation occurs.

The time Fourier spectra of nx(t) and of the oscillating part of the output intensity

Ix(t) have one fundamental frequency, f0 and 2f0 respectively. The double frequency

arises because the angle Φ enters quadratically into the expressions for |Ex,y|2 [see Eqs.

(A.19)]. Θn, Φn and ∆ are constant and do not depend on time.

Figure 2.4 shows the director dynamics in the UP1 regime, when ρ1 < ρ < ρ2. In

agreement with theory (right part of Fig. 2.4), the director precesses uniformly around

the z-axis at frequency f0. This is indicated by a quasi-sinusoidal behavior of i(t)

together with a quasi-constant Icenter (left part of Fig. 2.4).

2The experimental data was provided by E. Brasselet et al.
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Figure 2.3. (a): calculated ∆(ρ) (∆ < 3π).
(b): experimental 〈Icenter(ρ)〉t (•). The vertical bars are the standard deviation of Icenter(t)
for the corresponding value of ρ and the solid line is to guide the eye of the extrema of
Icenter(t). The points labeled A and B are also included in Fig. 2.5. They correspond to
the time series in Figs. 2.4 and 2.11.



2.5. First regime of uniform director precession 21

Figure 2.4. Director dynamics in the UP1 regime.
Left part: experimental i(t) and Icenter(t) for ρ = 1.10, which corresponds to point A in
Figs. 2.3 and 2.5.
Right part: calculated Ix(t) and ∆(t)/2π for ρ = 1.20.
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Figure 2.5. Precession frequency f0(ρ) versus ρ.
(a): theory.
(b): experiment (•). The solid line is to guide the eye. The points labeled A and B
correspond to the time series in Figs. 2.4 and 2.11.
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A point of disagreement is that theory predicts a deceleration of the precession as ρ

increases from ρ1 to ρ2 [Fig. 2.5(a)] whereas an acceleration is observed experimentally

[Fig. 2.5(b)]. This behavior has already been noted in Ref. [44] and attributed to

the finite size of the excitation beam: the present aspect ratio is δ = 2w0/L = 0.4

(where 2w0 is the beam diameter). For higher values of δ, the deceleration behavior

predicted by the infinite plane wave theory was in fact observed, as shown in Ref. [5]

for δ = 2 and δ = 3. In fact, δ ' 2 has been demonstrated to be a critical value for the

aspect ratio of the laser beam in another context where the excitation light is linearly

polarized at normal incidence [45].

2.6 Secondary supercritical Hopf bifurcation (ρ '
ρ2)

It was recently observed in experiments that for at a certain intensity ρ2 the UP1 state

looses its stability: the director motion then becomes a nonuniform precession with a

new frequency labeled f1, associated with nutation [9, 46]. The second order nature

of the transition has already been identified experimentally [9,13,43] and theoretically

[43, 46].

As a result of the appearance of the new frequency f1 at ρ = ρ2, the director mo-

tion becomes quasi-periodic characterized by the two frequencies f0 and f1. This is

illustrated in Fig. 2.6(a) where the trajectory of the director in the (nx, ny) plane is

plotted for ρ = 1.55 at z = L/2 − ` (` 6= 0). The reason for this somewhat arbitrary

choice is to have contributions from all polar modes since by construction the even

modes Θn sin(nπz/L) are zero at the center of the cell (z = L/2). This trajectory is

not closed in the laboratory frame indicating quasi-periodicity of the director. In fact,

the two independent motions, namely the precession (f0) and the nutation (f1) can be

isolated by transforming to a frame that rotates with frequency f0. The director com-

ponents (nrot
x , nrot

y ) in this rotating frame are connected with those in the laboratory

frame by

nrot
x = ny sin(2πf0t) + nx cos(2πf0t) , (2.18)

nrot
y = ny cos(2πf0t) − nx sin(2πf0t) . (2.19)

In the rotating frame, the director performs a simple periodic motion with frequency

f1 as is seen in Fig. 2.6(b) with the arrow indicating the sense of rotation for the case

where the incident light is left circularly polarized. As will be argued below this sense

of rotation is always opposite to that of the underlying precession.
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As depicted in Figs. 2.2(b),2.3(a), the dashed line starting at ρ = ρ2 is unstable. In

other words, starting from initial conditions not too far from the UP1 state at some

value of ρ inside the NUP regime, the system eventually settles on the NUP solution.

This is illustrated in Fig. 2.6(c,d) (for ρ = 1.55) where the trajectory of the director

in the rotating frame is shown. Note that the precession frequency f0 for the NUP

solution depends on ρ and differs from that of the (unstable) UP1 or UPS solutions

(see Fig. 2.5). In this frame, the director trajectory of the UP1 and UPS states are

circles, i.e. they are periodic motions with the frequency difference (see the dashed

lines and the arrows in Fig. 2.6(c,d)). From Fig. 2.6(c) we see that starting from

initial conditions near the UP1 solution, the director eventually settles on the NUP

solution, which is represented by a simple limit cycle. A similar process starting from

an appropriate initial condition near the UPS solution is shown in Fig. 2.6(d). The

difference from the previous case is that here one finds initial conditions (near UPS)

which lead to the largely-reoriented UP2 state. In fact, the unstable UPS branch

represents the saddle point (or separatrix) that separates the regions of attraction of

the NUP state (or, below ρ2, the UP1 state) from that of the largely-reoriented UP2

state. At this point it might also be interesting to note that the UP1 state represents

a stable node at ρ ∼ ρ1 (the relevant stability exponents are real and negative). Then,

between ρ1 and ρ2 it changes to a focus (the stability exponents become complex). At

ρ2 the real part of the complex pair of stability exponents passes through zero and

then becomes positive. The sense of rotation of the NUP loop [Fig. 2.6(b)] is fixed by

the tendency towards smaller precession rate when Θ increases. Thus, whenever Θ is

small ∂tΦ is large, resulting in a sense of rotation opposite to that of the precession.

In order to demonstrate unambiguously the nature of the bifurcation at ρ = ρ2, we have

verified two scaling properties. First we have checked that the amplitude of the limit

cycle, A, satisfies the scaling law A(ρ)−A(ρ2) = O(ρ−ρ2)
1/2 in the neighborhood of the

bifurcation point. For this purpose, we defined theoretically this amplitude as Atheory =

max |n⊥|−min |n⊥| where n⊥ = nxex+nyey is the projection of n onto the plane of the

layer. The experimental observable is chosen to be Aexp = SD(Icenter), where SD(X)

accounts for standard deviation of the time series X(t) 3. Clearly Atheory 6= 0 and

Aexp 6= 0 only in the presence of nutation. The results are shown in Fig. 2.7 where

Aexp is plotted versus ρ in Fig. 2.7(a) (filled circles) and Atheory is shown in Fig. 2.7(b)

(solid line). The experimental data are fitted by Aexp(ρ)−Aexp(ρ2) = O(ρ−ρ2)
γ using

the four points in the range 1.2 < ρ < 1.4 and taking Aexp(ρ2) as the averaged value

of Aexp for ρ < 1.2. We found γ = 0.46 ± 0.08 (dashed line) and ρ2 = 1.208 ± 0.001.

On the other hand we obtain γ = 1/2 from the theory. Second, we have checked that

3The experimental data was provided by E. Brasselet et al.
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Figure 2.6. (a),(b): director trajectory at ρ = 1.55. (a) Quasiperiodic behavior in the
laboratory frame (nx, ny). (b) Periodic limit cycle in the rotating frame (nrot

x , nrot
y ). The

arrow indicates the sense of rotation when the incident light is left circularly polarized.
(c),(d): director trajectory at ρ = 1.55 in the f0(ρ,NUP)-rotating frame showing the
instability of the UP1 and UPS solutions in the NUP regime. (c) Initial condition near
the UP1 solution. (d) Initial condition near the UPS solution. The arrows indicate the
sense of rotation of the corresponding trajectory when the incident light is left circularly
polarized.
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the frequency f1 satisfies the scaling law f1(ρ) − f1(ρ2) = O(ρ − ρ2) as displayed in

Fig. 2.8 where dashed lines are linear fits. In conclusion, all these results confirm that

a supercritical Hopf bifurcation occurs at ρ = ρ2.

The transition UP1 → NUP is associated with a sudden change of slope of the preces-

sion frequency versus intensity, as predicted by theory [see Fig. 2.5(a)]. This is related

with a fact, that in the NUP regime, the phase shift ∆ has values closer to 2π as ρ

increases [see Fig. 2.3(a)], thus according to an approximate formula Eq. (2.27) (see

Sec. 2.10) f0 decreases.

2.7 Regime of nonuniform director precession

In the NUP regime all modes Θn and Φn with n ≥ 1 are time dependent and the

Fourier spectrum of the their oscillating part contains frequencies mf1, where m is an

integer. The spectra of the phase delay ∆, director components nx,y and the output

intensities Ix,y have peaks at frequencies given by the simple formulas:

∆̃ = {mf1} , (2.20)

ñx,y = {f0, mf1 ± f0} ,
Ĩx,y = {2f0, mf1 ± 2f0} .

Such predictions agree with the experimental observations reported in Ref. [9]. As an

example in Fig. 2.9 the power spectra of the phase delay ∆ and output intensities Ix,y

for ρ = 1.50 are depicted. The exact nature of the spectra (i.e. the importance of each

harmonic) depends on the incident intensity and for the purpose of demonstration, we

quantified the importance of a certain frequency component f ∗ in the power spectrum

of ∆ by taking the corresponding amplitude and dividing it by the largest one at f = f1.

The results are displayed in Fig. 2.10 for a few harmonics. Starting from Wf∗ = 0 at

the bifurcation point ρ = ρ2, these functions increase as ρ is increased. Nevertheless

one can see that the amplitudes of the peaks decay quite fast with increasing m. Far

above ρ = ρ2, the director motion is thus no longer qualitatively similar to a quasi-

uniform precession, as illustrated in Fig. 2.11. In this figure, the experimental i(t) and

Icenter(t) are presented for ρ = 1.37 on the left and the calculated Ix(t) and ∆(t) for

ρ = 1.70 are presented on the right.



2.7. Regime of nonuniform director precession 27

Figure 2.7. Scaling law for the amplitude A of the limit cycle born at the transition
UP1 → NUP. Left part: experimental data (•) fitted by (ρ − ρ2)

γ near ρ2, whose best fit
gives γ = 0.46± 0.08. Right part: theory (solid line) where the best fit (dashed line) gives
γ = 1/2. See the text for details.

Figure 2.8. Scaling law for the frequency of the limit cycle born through the transition
UP1 → NUP. Left part: experiment (•) with linear fit (dashed line). Right part: theory
(solid line) with linear fit (dashed line).
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Figure 2.9. Calculated power spectra ∆̃ and Ĩx,y for ρ = 1.50.

Figure 2.10. Characterization of the dynamics in the NUP regime (ρ2 < ρ < ρ3):

Amplitudes Wf∗(∆̃) of the power spectrum of ∆ divided by the amplitude at f = f1

versus ρ.
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Figure 2.11. Dynamics in the NUP regime.
Left part: experimental i(t) and Icenter(t) for ρ = 1.37, which corresponds to point B in
Figs. 2.3 and 2.5.
Right part: calculated Ix(t) and ∆(t)/2π for ρ = 1.70.
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2.8 Homoclinic bifurcation (ρ ' ρ3)

In some narrow region around ρ3 ≈ 1.75 the period T = 1/f1 of the NUP increases

progressively with increasing light intensity. Indeed, this period appears to diverge at

ρ3 ≈ 1.75, as shown in Fig. 2.12. We found that this divergence is logarithmic, by

fitting the calculated values to the function a+ b ln(ρ3 − ρ). The best fit is represented

by the solid line in Fig. 2.12 which corresponds to a = 1.249 and b = −0.612. The

nature of the singularity at ρ = ρ3 signifies that the discontinuous transition NUP →
UP2 [see Fig. 2.2(a)] has the character of a homoclinic bifurcation [47].

As ρ approaches the homoclinic bifurcation point, the trajectory of the director ap-

proaches the unstable UPS orbit for longer and longer intervals. This is demon-

strated in Fig. 2.13 where the director trajectory is plotted in the (nx, ny) plane

for ρ = 1.748542389055. The system moves very close to the unstable UPS limit cycle,

represented by the dashed line [see Figs. 2.2 and 2.13]. As seen, the motion near ρ3

possesses two time scales, a slow one and a fast one, as expected from the homoclinic

nature of the transition. Figure 2.14 emphasizes this point where the phase shift ∆(t)

and the instantaneous angular velocity Ω(t) = dΦ0/dt are plotted versus time. When

∆ ' 2π, the angular velocity has some constant value, more than one order of magni-

tude smaller than the value reached when ∆ ' π. Taking into account that the total

angular momentum transferred to the nematic by a photon is (1 − cos ∆)~, the slow

regime is interpreted as a situation where there is almost no net angular momentum

transfer while the fast regime corresponds to quasi-optimal transfer.

At ρ = ρ3 the system jumps to a new state of uniform precession of the director (UP2)

with large reorientation (Θ ' 74o) and slow precession rate.

2.9 Second regime of uniform director precession

Figure Fig. 2.15 shows the typical director dynamics in the UP2 regime, when ρ > ρ3.

As predicted by theory (right part of Fig. 2.15), the director precesses uniformly

around the z-axis at frequency f0: one observes a quasi-sinusoidal i(t) together with a

quasi-constant Icenter (left part of Fig. 2.15). In this case, the frequency f0 is smaller

than the one of the UP1 regime by more than one order of magnitude [compare the

time scales of Figs. 2.4 and 2.15].

As displayed in Fig. 2.2(a), starting from the stable UP2 branch above ρ3 and lowering

the excitation intensity, one finds a large and rather complicated hysteretic cycle, which
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Figure 2.12. Characterization of the homoclinic bifurcation f−1
1 (ρ) = O[ln(ρ3−ρ)] near

ρ3. The solid line is the best fit to the theoretically calculated values (•).

eventually leads to a jump back to the UP1 solution at ρ∗3 = 1.09. This part of the

UP2 branch consists of alternatively stable and unstable regions exhibiting a series

of saddle-node bifurcations. This result was already obtained in the framework of an

approximate model [5] (see also the next section).

Finally, it is instructive to plot the precession frequency f0 as a function of ρ for

different regimes with uniform precession of the director. The result is shown in Fig.

2.16 where f0 is plotted versus ρ, both for the UP1, UPS and UP2 regimes. Note the

different scales. The solid lines refer to stable limit cycles and dashed lines to unstable

ones. One can see that in the UP2 regime the frequency of precession f0 is zero for

some isolated values of the light intensity. Then the limit cycle in the (nx, ny) plane

degenerates to a continuum of fixed points on a circle, a situation where the total

angular momentum transfer from the light to the nematic is zero.

Recall that for the UP1 and NUP states ∆ is always smaller than 2π, whereas for the

stable UP2 states the values of ∆ are always large (basically many times 2π). Thus

for the UP2 states the phase factor α(z) [see Eq. (2.3)] varies rapidly across the layer

from zero to ∆, which leads to a rapidly oscillating torque term LΦ, see Eq. (2.5). As

a result the director twist ∂zΦ exhibits rapid spatial oscillations [see also Eq. (2.28)].

This effect becomes strongly visible in the backflow as discussed in Chapter 4.
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Figure 2.13. Calculated director trajectory in the (nx, ny) plane near ρ3 (ρ =
1.748542389055).

Figure 2.14. Calculated dynamics near ρ3 (ρ = 1.748542389055). (a) Phase shift ∆(t).
(b) Instantaneous angular velocity Ω(t) = dΦ0/dt.
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Figure 2.15. Director dynamics in the UP2 regime.
Left part: experimental i(t) and Icenter(t) just above the homoclinic bifurcation.
Right part: calculated Ix,y(t) and ∆(t) at ρ = 1.80.
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Figure 2.16. Precession frequency f0(ρ) for the UP1, UPS and UP2 regimes. Part (b)
magnifies the region delimited by the box in part (a). Solid (dashed) curves correspond
to stable (unstable) solutions.
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2.10 Approximate model for the uniform preces-

sion regimes

The problem can be considerably simplified and even solved analytically if we assume

that the angle Θ is small, keep only the first mode of Θ and restrict our consideration to

the case when the director precess uniformly (2πf0 = dΦ0/dt, dΦn/dt = dΘn/dt = 0).

We also assume that the gradient of the twist distortions ∂zΦ(z) is small which is well

fulfilled for the UP1 regime described in Sec. 2.5.

The field equations (A.15) may be solved by means of successive iterations using |∂zΦ| <
1. The zeroth-order solution of Eq. (A.15) is given by:

A(0)
o = Ao0, A(0)

e = Ae0 ·
(
λo

λe

) 1

4

(2.21)

and the recurrence relations for the solutions have the following form:




A
(m)
o = Ao0 −

z∫
0

dz′∂zΦ

√
λe

λo
eiα(z′)A

(m−1)
e

A
(m)
e = Ae0 −

z∫
0

dz′
λ′eA

(m−1)
e

4λe

+
z∫
0

dz′∂zΦ

√
λo

λe

e−iα(z′)A
(m−1)
o

(2.22)

The result after m iterations can be substituted into the evolution equations (2.4).

Writing the angle Θ in the form

Θ = Θ1(t) sin z (2.23)

one can easily obtain the following relations for the phase delay α(z) and that induced

by the whole layer [see Eqs. (2.3)]:

α(z) = ∆v(z), ∆ = L̃Θ1(t)
2 , (2.24)

where v(z) and the dimensionless thickness L̃ are given by:

v(z) =
z − sin z cos z

π
, L̃ =

π
√
ε⊥µL

2λ
, µ =

εa

εa + ε⊥
. (2.25)

We may use the first iteration m = 1 for Ao, Ae [see Eqs. (2.22)] that includes the twist

gradient ∂zΦ and substitute the result into the Eqs. (2.4), expanding all expressions

as a power series in Θ,Φ. Retaining the terms up to third order in Θ and keeping the

lowest order terms in ∂zΦ, the equation for Φ reduces to

2πf0 sin2 z =
d

dz
[sin2 z∂zΦ] + ρ sin[∆v(z)] sin2 z . (2.26)
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One can obtain the following expressions for the frequency f0 and the twist gradient

∂zΦ by integrating Eq. (2.26) and evaluating the result at z = π:

f0 =
ρ (1 − cos ∆)

2π∆
, (2.27)

∂zΦ =
πρ

2∆

(1 − cos ∆)v(z) − 1 + cos[∆v(z)]

sin2 z
. (2.28)

Similar simplifications of the equation for Θ [see Eqs. (2.4)] yield the following result:

[1 − (1 − k1)Θ
2]Θ′′ − (1 − k1)ΘΘ′2 − ΘΦ′2 +

ρΘ



1 +

9µ− 4

6
Θ2 + 2

z∫

0

dy∂zΦ sin[∆v(y)]



 = 0 . (2.29)

After substituting Eqs. (2.23), (2.28) into Eq. (2.29) and projecting it onto the trial

function sin z we have a transcendent equation for ∆:

∆

[
1 − (1 − k1)∆

2L̃
− ρ

{
1 +

(9µ− 4)∆

8L̃

}
+
ρ2

2
G(∆)

]
= 0 , (2.30)

where G(∆) is defined as:

G(∆) = 2π

π∫

0

dz
sin[∆v](1 − v)[1 − cos[∆v] − (1 − cos ∆)v]

∆ sin2 z

(2.31)

+ π

π∫

0

dz

[
1 − cos[∆v] − (1 − cos ∆)v

∆ sin z

]2

.

The trivial solution ∆ = 0 corresponds to the homeotropic orientation of the director.

It is seen that the expression in the brackets of Eq. (2.30) is quadratic with respect to

ρ with a solution given by (only one root leads to a physical solution):

ρ =
1

G(∆)

[
1 +

(9µ− 4)∆

8L̃
− (2.32)

{(
1 +

(9µ− 4)∆

8L̃

)2

− 2G(∆)

(
1 − (1 − k1)∆

2L̃

)} 1

2



 .

This result coincides with the one obtained in [5] where the light propagation was

treated in terms of the Stokes vector.
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Figure 2.17. Phase delay ∆/2π versus ρ.
Dashed line: approximate solutions for the uniform director precession.
Solid line: accurate solutions that are taken from Fig. 2.2.

In Fig. 2.17 the approximate solutions for ∆(ρ) given by Eq. (2.32) and corresponding

to UP1, UP2 and UPS solutions described in Sects. 2.4, 2.5 and 2.9 [see also Fig. 2.2]

are shown (dashed lines) together with the accurate solutions obtained numerically

(solid lines). One can see that the UP1 regime (at not too high values of ρ) and the

lowest part of the UP2 regime is described rather well by the approximate formula.

The higher the values of ∆ are the worse the formula works because Θ becomes large

and the higher order modes of Θ have to be taken into account. The loop depicted in

Fig. 2.2(b) can not be reproduced in the framework of the approximate model for two

reasons. One is, that Eq. (2.32) leads to complex values of ρ for the region of (∆, ρ)

corresponding to the loop. The other is, that in Eq. (2.28) the gradient of the twist

distortion ∂zΦ(z) is proportional to ρ/∆, which becomes large as ρ is increased since

∆ does not change considerably in the UP1 regime. Thus ∂zΦ(z) becomes large, and

one iteration on Ao, Ae is insufficient to calculate the field.

2.11 Additional static fields

Having described in detail the different regimes encountered as the light intensity is

varied, one can consider how to stabilize or destabilize some regimes to facilitate their

observations. We extended slightly our model to include an additional static (low-
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frequency) electric field aligned along the z axis (perpendicular to the layer). One

should use ac fields with not too low frequency (say, above a few kHz) in order to

avoid complications due to electro-convection. We will nevertheless assume that the

frequency is sufficiently low to apply the quasi-static approximation.

The second equation from Maxwell’s Eqs. (1.9) gives the expression for the z-component

of the static field:

Est
z =

C

εst
zz

, (2.33)

where

εst
zz(z) = εst

⊥ + εst
a cos2 Θ (2.34)

is the z component of the dielectric tensor with the dielectric anisotropy εst
a = εst

‖ −
εst
⊥ and the dielectric permittivity (for a low-frequency field) εst

⊥ (εst
‖ ) perpendicular

(parallel) to n. This field will help to stabilize [destabilize] our primary bifurcation

scenario if the static dielectric anisotropy εst
a > 0 [εst

a < 0]. In Eq. (2.33) C is an

unknown constant that can be found using the fact that the voltage V = Est
0 L applied

between the substrates is fixed. Finally, Est
z (z) is as follows (recall that we use the

normalized z as before):

Est
z (z) =

πEst
0

εst
zz(z)

π∫
0

dz

εst
zz(z)

. (2.35)

The additional electric field exerts a torque on the director and must be taken into

account by inserting

Fst = −ε
st
a

8π
n2

z[E
st
z (z)]2 (2.36)

into the expression for the free energy (1.3). Eventually, Eq. (2.36) gives a contribution

to the equation for Θ only and the term we have to insert into LΘ is [see Eqs. (2.4)]:

L
st
Θ = −sign(εst

a )

2

π2 sin 2Θest

[εst
zz]

2

[
π∫
0

dz

εst
zz

]2 , (2.37)

where est is the normalized strength of the electric field

est =

(
Est

0

Est
th

)2

, (Est
th)

2 =
4π3K3

|εst
a |L2

. (2.38)

At est = 1 and ρ = 0 the classical Fréedericksz transition from homeotropic to sta-

tionary distorted state takes place (dielectric anisotropy should be negative of course

εst
a < 0) [48].
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In Fig. 2.18 the phase delay ∆ versus ρ is shown for εst
a < 0 and εst

a > 0 for a given

applied voltage V . For εst
a > 0, the static field plays a stabilizing role and the UP and

NUP regimes shift to a region of higher intensities compared to the situation without

static field (est = 0). Moreover the region of the existence of the NUP regime becomes

somewhat larger. This may be useful since it allows to make observations in the NUP

for a wider range of excitation intensities. In contrast, when εst
a < 0 [destabilizing

effect] the regimes shift to lower intensities, while keeping the same sequence of bifur-

cations UP1 → NUP → UP2 (not shown in the figure). Such a shift of the bifurcation

thresholds may allow to carry out experiments at lower intensities. In addition, the

range of intensities that corresponds to the NUP regime shrink to zero for sufficiently

high est as seen in Fig. 2.18(a). Approximately at the same est the unstable loop

(see Fig. 2.2(b)) is separated from the rest and reduces to an unstable ”island”. Also

the strength of the hysteresis of the Fréedericksz transition decreases. This can be

easily understood since for large values of est, the static electric torque dominates. In

this limit, the behavior of the nematic cell will tend to be similar to one under the

effect of a quasi-static field alone, for which the Fréedericksz transition is continuous

(supercritical).

2.12 Discussion

In this chapter we have discussed the reorientation dynamics of a homeotropically

aligned nematic liquid crystal film excited by circularly polarized light at normal inci-

dence. The complete bifurcation scenario has been obtained theoretically.

It has been shown that the secondary instability above the optical Fréedericksz tran-

sition threshold is a supercritical Hopf bifurcation. As a result of this bifurcation, a

quasi-periodic dynamics is generated where the motion of the director is a combina-

tion of precession and nutation with distinct fundamental frequencies. Moreover the

discontinuous transition from the quasi-periodic regime to a uniform precession regime

has been identified to be a homoclinic bifurcation. These results have been confirmed

experimentally with the help of a pair of observable that allow to distinguish nutation

from precession. The physical interpretation of the behavior of the nematic is based

on the transfer of the spin angular momentum of the light to the liquid crystal.

Although homoclinic bifurcations play a key role in numerous systems their experi-

mental identification is fairly scarce. We are here dealing with the simplest type where

a limit cycle collides with a saddle point having one unstable direction [47]. Maybe the

best-known examples for this case are systems described by the driven and damped
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Figure 2.18. Effects of an additional static field on the bifurcation diagram for different
signs of the static dielectric anisotropy. Destabilization occurs in the case εst

a < 0 [(a)]
and est 6= 0 while in the opposite case when εst

a > 0 [(b)] and est 6= 0 the field plays a
stabilizing role. Solid (dashed) curves correspond to stable (unstable) solutions.



2.12. Discussion 41

Sine-Gordon equation, which includes, in particular, spatially restricted or extended

Josephson contacts [49]. Actually the same equation describes driven and damped

pendula. Examples of such a type of homoclinic bifurcations in hydrodynamic systems

can be found in [50, 51]. More complicated homoclinic bifurcations may give rise to

chaos as shown in classic work by Shil’nikov [47, 52]. For an experimental realization

of such a scenario, see [53]. When a reflection symmetry is involved gluing of the two

orbits can occur at the homoclinic point. An interesting example can be found in a

light-driven instability in nematics involving a linearly polarized laser beam at oblique

incidence [33, 34].

Further improvement of the theory involves generalization to finite beam size and

the inclusion of the flow field excited by the motion of the director. Whereas the

latter effect has been taken into account in the description of electric and magnetic

field driven instabilities it has apparently never been considered in the context of light

driven dynamic phenomena. It will be shown in Chapter 4 that in the system considered

here only quantitative shifts of the various transitions arise [54]. Another direction of

research could be the inclusion of lateral spatial degrees of freedom, as first done in the

context of the oblique-incidence instability [55], see Chapter 5.





Chapter 3

Symmetry breaking effects in

nonlinear reorientation dynamics

induced by elliptically polarized

light in nematics

It was shown in the previous chapter that circularly polarized light incident perpendicu-

larly on a nematic layer induces quasiperiodic director rotation if the incident intensity

exceeds the one for the Fréedericksz transition by about 40%. With further increase

of the intensity a discontinuous transition via a homoclinic bifurcation takes place to

a state of periodic rotation of the director with large reorientation. The aim of this

chapter is to demonstrate the existence of analogous regimes for the case of elliptically

polarized incident light. These are expected to be more complex because of the broken

isotropy in the plane of the layer. Some features of the nonlinear dynamics induced

by an elliptically polarized light were reported in Ref. [14,15] for intensities lower than

that needed for the quasiperiodic director rotation.

3.1 Theoretical model

We consider an elliptically polarized (EP) plane wave incident perpendicularly on a

layer of nematic that has initially homeotropic alignment (with strong homeotropic

anchoring at the boundaries). The light is polarized in the plane of the layer (the

x,y plane) and propagates along the positive z-axis (see Fig. 2.1 in the previous

chapter). Similar to Sec. 2.1 we use the representation (2.1) for the director and assume

43
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z, t dependence only. Thus the equations for the director motion and for the light

propagation inside the layer are given, respectively, by Eqs. (2.4) and Eqs. (A.15). The

boundary conditions for the angles Θ, Φ and for the amplitudes Ao, Ae (see Appendix

A) are given respectively, by (2.7) and (A.17). We use the expansions (2.12) for Θ and Φ

in order to derive a set of coupled nonlinear ODEs for the mode amplitudes Θn(t),Φn(t)

analogous to Eqs. (2.15). The only difference in comparison with the case of the circular

polarization is that in the elliptic case the equation (2.16) for Φ0 is coupled with the

rest of the equations (2.15) owing to the fact that Φ0 does not disappear from the

boundary conditions (A.17) whereas in the circular case it does [see Eq. (2.2)]. This is

due to the broken rotational invariance around the z-axis. A regime of simple rotation

of the director (when dΦ0/dt = const and dΦn/dt = dΘn/dt = 0), possible in the

CP case, can not be realized when the light ellipticity χ 6= π/4 [χ varies between π/4

(circular case) to 0 (linear polarization), see Appendix A]. In the EP case all modes

(including Φ0) are either time-dependent (dΦ0/dt 6= 0, dΦn/dt 6= 0, dΘn/dt 6= 0) or

time independent (dΦ0/dt = dΦn/dt = dΘn/dt = 0) simultaneously.

In the calculations, we used same the material parameters and layer thickness as in

Sec. 2.3.

3.2 Bifurcation scenario

In this section, the director motion is analyzed by taking ρ and χ as control parameters

[ρ = I/Ic is the normalized intensity introduced in Sec. 2.1, see Eq. (2.6)]. The results

are presented for values of the ellipticity χ from 0.35 to π/4. In this range numerous

transitions between different dynamical regimes are observed. For lower values of χ

the rotating states we are interested in (see below) do not exist. Some aspects of the

scenario in that region has been investigated in [15].

Figure 3.1 presents the different regimes that exist in the plane (χ, ρ) for 0.4 ≤ χ ≤ π/4.

Below the Fréedericksz threshold ρth that depends on χ as [56]

ρth =
1

1 + cos 2χ
(3.1)

the director is unperturbed (U) whereas above this threshold, one observes stationary

distorted (D), oscillatory (O), periodic rotating (PR), quasi-periodic rotating (QPR) or

largely distorted (LD) states depending on the values of ρ and χ. Keeping the ellipticity

fixed and increasing the intensity, these states appear as a well-defined sequence of

transitions. In the range of interest for χ, four distinct bifurcation sequences can be
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Figure 3.1. Phase diagram of the dynamical regimes in the parameter plane of (χ, ρ).
U: Undistorted states; D: stationary Distorted states; O: periodic Oscillating states; PR:
Periodic Rotating states; QPR: Quasi-Periodic Rotating states; LD: stationary, oscillating
or rotating Largely Distorted states. The dashed lines hPR and hLD correspond to the
hysteretic region of the PR states and LD states respectively.

identified. The results are summarized in Table 3.1 and are detailed in what follows.

The trajectories of the director at some value of z (not at z = L/2) in the various

regimes are shown in Fig. 3.2.

For χ < π/4 the LIFT is a pitchfork bifurcation and the reoriented state is a D state

[filled circles in Fig. 3.2(a)]. This state loses its stability through a supercritical Hopf

bifurcation to an O state [curve 1 in Fig. 3.2(a)] characterized by a single frequency f0

(see Table 3.2). It should be noted that reflection symmetry is spontaneously broken

by the first bifurcation, so in the D and O states one has two symmetry degenerate

solutions related by {nx → −nx, ny → −ny}. As ρ increases, these two limit cycles

merge in a gluing bifurcation at the origin and restore the reflection symmetry. This

leads to the appearance of a single double-length limit cycle that corresponds to the

trajectory in the PR state [curve 2 in Fig. 3.2(a)]. A further increase of the intensity

eventually leads for 0.35 < χ < 0.53 to a continuous transition to a LD regime that
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Table 3.1. Calculated sequence of bifurcations as a function of the ellipticity χ of the
incident light.

Ellipticity Sequence of transitions Bifurcation nature

Unperturbed → Distorted Pitchfork

0.35 < χ < 0.53 Distorted → Periodic oscillation Supercritical Hopf

Periodic oscillation → Periodic rotation Gluing

Periodic rotation → Periodic oscillation or distorted Continuous

Unperturbed → Distorted Pitchfork

Distorted → Periodic oscillation Supercritical Hopf

0.53 < χ < 0.72 Periodic oscillation → Periodic rotation-1 Gluing

Periodic rotation-1 → Periodic rotation-2 Saddle-node

Periodic rotation-2 → Distorted continuousa or

discontinuousb

Unperturbed → Distorted Pitchfork

Distorted → Periodic oscillation Supercritical Hopf

0.72 < χ < π/4 Periodic oscillation → Periodic rotation-1 Gluing

Periodic rotation-1 → Periodic rotation-2 Saddle-node

Periodic rotation-2 → Quasi-periodic rotation Supercritical Hopf

Quasi-periodic rotation → Distorted or periodic rotation Discontinuous

Unperturbed → Periodic rotation Subcritical Hopf

χ = π/4 Periodic rotation → Quasi-periodic rotation Supercritical Hopf

Quasi-periodic rotation → Periodic rotation Homoclinic

afor χ < 0.66
bfor χ > 0.66

Table 3.2. Spectral content nx,y(t), Ix,y(t) and ∆(t) for the different dynamical regimes
for an elliptically polarized incident light.

Regime nx,y Ix,y ∆

Periodic oscillation nf0 nf0 nf0

Periodic rotation (2n − 1)f0 2nf0 2nf0

Quasi-periodic rotation nf1 ± (2m + 1)f0 nf1 ± 2mf0 nf1 ± 2mf0
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Figure 3.2. Calculated director trajectories in the (nx, ny) plane. (a) χ = 0.6: distorted
state at ρ = 0.8 (•); periodic oscillating state at ρ = 0.91 (curve 1); periodic rotating state
PR1 slightly above the gluing bifurcation at ρ = 0.917 (curve 2); periodic rotating state
PR2 at ρ = 0.95 (curve 3). (b) χ = 0.74: periodic oscillating state at ρ = 0.9925 (curve
1); periodic rotating state PR1 slightly above the gluing bifurcation at ρ = 0.9932 (curve
2); periodic rotating state PR2 slightly above the saddle-node bifurcation at ρ = 0.9936
(curve 3, dashed line); quasi-periodic rotating state at ρ = 1.5 (curve 4).

consists of oscillatory states (near χ = 0.35) or stationary distorted states.

For 0.53 < χ < 0.72 there is one more regime. In fact, the limit cycle amplitude of the

PR regime, now labeled PR1 [curve 2 in Figs. 3.2(a)], abruptly increases. This results

in another periodic rotating regime labeled PR2 with higher reorientation amplitude

[curve 3 in Figs. 3.2(a) and 3.2(b)]. The transition takes place via a saddle-node

bifurcation (not shown in Fig. 3.1 because it is very near to the gluing bifurcation)

which additionally allows for the hysteretic behavior when the intensity is reduced

starting from the PR2 state, as already discussed in Ref. [15]. The system switches

back to the O or D state at the line labeled hPR in Fig. 3.1. In contrast, no hysteresis

is observed when ρ is decreased starting from the PR1 regime since the O → PR1

transition is continuous. Finally, for high intensity there is a continuous (for χ < 0.66)

or discontinuous (for χ > 0.66) transition to a LD regime represented by stationary

distorted states. For χ > 0.66 the PR2 → LD transition is discontinuous and hysteretic.

In that case, the system remains largely reoriented when the intensity is reduced until

the hysteretic line hLD is reached, for which the system switches to the PR2 regime

with small reorientation (Fig. 3.1).
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For 0.72 < χ < π/4 one has the sequence U → D → O → PR1 → PR2 as before [see

Figs. 3.1, 3.2(b)]. However, for higher values of ρ a QPR regime is born through a

secondary supercritical Hopf bifurcation, which introduces a new frequency f1 into the

system and transforms the dynamics into quasi-periodic [curve 4 in Fig. 3.2(b)]. As the

intensity increases the QPR state undergoes a discontinuous transition to a LD regime

represented by a stationary distorted or slowly rotating (close to χ = π/4) state.

The particular case χ = π/4, which corresponds to CP incident light, has been the

subject of Chapter 2. The results are summarized at the end of Table 3.1.

The signature of the anisotropy of incident light is visible in the director trajectories

in the (nx, ny) plane. The PR trajectories are obviously non circularly symmetric for

χ = 0.6 [curves 2 and 3 in Fig. 3.2(a)] whereas the PR2 and QPR states are almost

circularly symmetric when the polarization is almost CP [curves 3 and 4 in Fig.3.2(b)].

It is also worth recalling that the dynamical regimes O, PR and QPR can be described

by means of one (for O and PR regimes) or two (for QPR regime) frequencies, f0 and

f1 respectively. The spectral content of the variables nx,y, ∆ and Ix,y is listed in Table

3.2. In fact, it is simple to identify a given dynamical regime by looking at the spectra

of the relevant variables.

Our results may be compared with previous theoretical treatment [15]. The equations

of motion for the director in Ref. [15] were solved using the same mode expansion as

we have done here, but retaining only Θ1 and at least the Φ0 and Φ1 modes [inclusion

of additional twist modes Φn≥2 were shown not to alter qualitatively the dynamics].

In distinction to our calculations however, their coupled mode equations have been

solved in the small distortion approximation. The QPR regime was not found by this

approach although other dynamical regimes such as O and PR were obtained and

observed experimentally [14]. The reason is that higher nonlinearities on the twist

gradient, namely (∂zΦ)2 and higher order modes of Θ start to play a key role at higher

ρ that are neglected in this reduced model. The observation of the QPR state was

reported in the particular case of a CP incident light [12, 13] and was later clearly

understood theoretically [43].

Below we discuss more specifically some of the bifurcations when the polarization state

of the incident light varies and present experimental confirmation. We shall focus

on the case of ellipticity close to χ = π/4 for which a transition from a periodic to

quasi-periodic rotating regime is expected.
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Figure 3.3. Experimental power spectra of Icenter(t) and i(t) in the periodic rotating
regime for ρ = 1.10 and χ ≈ π/4 (a-b) and χ = 0.74 (c-d).

Figure 3.4. Calculated amplitudes of the peaks at frequencies 2nf0 (2 ≤ n ≤ 4)
normalized to the peak at 2f0 in the power spectra of (a) ∆(t) and (b) Ix,y(t) versus χ for
ρ = 1.10. The solid line is to guide the eye.
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Figure 3.5. Calculated amplitude of the fundamental peak 2f0 in the power spectrum
of ∆(t) versus χ normalized to the peak at 2f0 at χ = 0.7, for ρ = 1.10. The solid line is
to guide the eye.

3.3 Periodic rotating regime

When the system is in the PR state all the spectra of the dynamical variables (see

Table 3.2) are described by a single frequency f0 (and, for χ < π/4, its harmonics).

The experimental observation is shown 1 in Figs. 3.3 where the power spectra of Icenter

and i(t) are plotted for ρ = 1.10, χ = π/4 (a-b) and ρ = 1.10, χ = 0.74 (c-d). Recall

that Icenter(experimental) should be related to ∆(theoretical) and i(experimental) to

Ix,y(theoretical) (for more details see Sec. 2.4). As expected from theory, only at

χ = 0.74 do both spectra exhibit clear harmonics 2nf0 (Table 3.2). The harmonic 4f0

is clearly visible in the spectrum of Icenter [Fig. 3.3(c)] and the harmonics 4f0 and 6f0

are also apparent in the spectra of i [Fig. 3.3(d)]. Figure 3.4 shows the calculated

amplitude of a given peak Wf at frequency f normalized to the peak at 2f0 in the

power spectra of ∆ and Ix,y as a function of χ for ρ = 1.10. One sees that the peaks

at 2nf0 with n ≥ 2 tend to zero as the polarization becomes circular (χ → π/4). On

the other hand, the amplitude of the power spectrum of ∆ at the frequency 2f0 also

goes to zero when χ approaches π/4 (Fig. 3.5) since the rotation is uniform in the CP

case (∆ = const). These trends are confirmed experimentally in Figs. 3.3(a-b) which

correspond to CP incident light. In these experiments, the angle χ satisfies χ ≥ 0.78,

i.e. within 1% or better accuracy of the ideal value π/4. We believe that non perfect

rotational invariance can explain the residual appearance of the frequency 2f0 in Fig.

3.3(a). The following estimate illustrates this. From Fig. 3.3(a) the ratio of the peaks

1The experimental data was provided by E. Brasselet et al.
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Figure 3.6. Calculated power spectra ∆̃ (a) and Ĩx,y (b) in the quasi-periodic rotating
regime for ρ = 1.50 at χ = 0.74.

at f = 2f0 for Ĩcenter turns out to be Wχ'π/4(Ĩcenter)/Wχ=0.74(Ĩcenter) = 0.047. From

the curve in Fig. 3.5 one then reads off a value of χ = 0.783 that is consistent with the

experimental constraint.

3.4 Transition from periodic to quasi-periodic ro-

tating regime

As shown in Fig. 3.1, when χ > 0.72, the periodic rotating regime is predicted to

lose its stability at ρ = ρ2 (which depends on χ): the resulting director dynamics then

becomes a quasi-periodic rotation characterized by two frequencies f0 and f1. This

is illustrated in Figs. 3.6(a-b) where the power spectra of ∆ and Ix,y are plotted for

χ = 0.74 and ρ = 1.50. Although the PR → QPR transition appears to be similar to

the one observed in the CP case, the spectral composition of the dynamical variables

in the QPR state are different in the CP and EP cases. This is seen in the comparison

of Figs. 2.9(a-b) (from the previous Chapter), taken at χ = π/4 and ρ = 1.50, with

Figs. 3.6(a-b). The spectra of ∆ and Ix,y both contain the frequencies nf1 ± 2mf0 in

the EP case while ∆̃ = nf1 and Ĩx,y = nf1 ± 2f0 in the CP case [see Table 3.2 and Eq.

(2.20)]. In other words, both precession i. e. the motion of Φ, and nutation, i. e. the

motion of Θ, are quasi-periodic (two frequencies f0 and f1) and nonlinear (presence

of harmonics) in the EP case. In contrast, in the CP case these motions are both

nonlinear but only precession is quasi-periodic. For ρ = 1.10, the director performs a
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Figure 3.7. Experimental power spectra of Icenter(t) (a) and i(t) (b) in the quasi-periodic
rotating regime for ρ = 1.30 and χ = 0.76.

Figure 3.8. Calculated ∆/2π versus ρ at χ = 0.74 showing the supercritical Hopf
bifurcation between the periodic and the quasi-periodic rotating regime at ρ = ρ2. (a) The
gray region represents the values explored during the oscillations of ∆(t). (b) Amplitude
A = ∆max − ∆min of the oscillation of ∆(t) in the neighborhood of the bifurcation point
ρ = ρ2.
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Figure 3.9. Calculated characteristic frequencies f0 (a) and f1 (b) versus ρ in the
periodic and quasi-periodic rotating regime for χ = π/4 (curve 1), χ = 0.75 (curve 2) and
χ = 0.73 (curve 3).

periodic motion characterized by a unique frequency f0, as expected. At the transition

to quasi-periodic dynamics, the emergence of the new frequency f1 and its harmonics

changes dramatically the appearance of the experimental spectra of Icenter and i. Figure

3.7 illustrates this point at ρ = 1.30 and χ = 0.76. As predicted by theory, f1 is the

dominant frequency of Ĩcenter [Fig. 3.7(a)] and 2f0 is the dominant frequency of ĩ [Fig.

3.7(b)].

The nature of the bifurcation at ρ = ρ2 can be further characterized by verifying

the scaling properties associated with the bifurcation. First we have checked that the

amplitude of the limit cycle, A, satisfies the scaling law A(ρ) − A(ρ2) = O(ρ− ρ2)
1/2

in the neighborhood of the bifurcation point. For this purpose, we define theoretically

this amplitude as A = (∆max−∆min)/2π where ∆max,min are respectively the maximum

and the minimum of ∆(t) for a given ρ. The results are shown in Fig. 3.8 where A is

plotted versus ρ. We found that in vicinity of the bifurcation A(ρ)−A(ρ2) = O(ρ−ρ2)
γ

with γ ' 0.5 and ρ2 ' 1.45. We have also verified that the frequency f1 satisfies the
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scaling law f1(ρ) − f1(ρ2) = O(ρ − ρ2) as one can see from Fig. 3.9(b). In summary,

all these results confirm that there is a supercritical Hopf bifurcation at ρ = ρ2.

3.5 Quasi-periodic rotating regime

The dependence of the calculated frequencies f0 and f1 as a function of the incident

intensity are displayed in Fig. 3.9 for different values of χ: χ = π/4 (curve 1), χ = 0.75

(curve 2) and χ = 0.73 (curve 3). The frequency f0 is obtained from the Fourier

spectrum of Ix,y, which exhibits the dominant frequency 2f0 [see Fig. 3.3(d) in the PR

regime and Figs. 3.6(b) and 3.7(b) in the QPR regime]. The frequency f1 in the QPR

regime is extracted from the Fourier spectrum of ∆, where it is the dominant frequency

[see Figs. 3.6(a) and 3.7(a)].

One can see that as in the CP case the transition PR → QPR is accompanied by a

sudden change of slope of the precession frequency f0 versus intensity [see Fig. 3.9(a)].

As in the CP case this is related with a fact, that in the NUP regime, the phase shift

∆ has values closer to 2π as ρ increases [see Fig. 3.8(a)]. Moreover it is seen from Figs.

3.9(a-b) that a decrease of the ellipticity at fixed intensity corresponds to a decrease

of both f0 and f1. The decrease of f0 is related to the fact that the mean value 〈∆〉t

of ∆(t) at fixed ρ becomes closer to 2π as χ decreases [see Fig. 3.10].

The analysis of the QPR → LD transition in the EP case is more complicated than

in the CP case where it was shown that the bifurcation is homoclinic of the simplest

type with a limit cycle that collides with a saddle point having one unstable direction

(see previous Chapter). It is no longer possible to easily obtain the unstable PR

solutions allowing to classify the bifurcation when χ 6= π/4: the loss of rotational

invariance leads to time-dependent mode amplitudes Θn and Φn for all n. At present,

we can only ascertain that the transition from QPR to LD states is discontinuous and

associated with a hysteretic behavior. The LD regime consists of either rotating states,

whose rotation frequency is at least one order of magnitude slower than that for the

PR states, or distorted states. In fact, the slowly rotating LD state exists only in a

very narrow region of χ close to χ = π/4.

3.6 Discussion

The nonlinear reorientation dynamics generated by elliptically polarized light at normal

incidence to a homeotropic nematic liquid crystal film has been studied theoretically.
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Figure 3.10. Calculated mean value 〈∆〉t of ∆(t) versus ρ in the periodic and quasi-
periodic rotating regime for χ = π/4 (curve 1), χ = 0.75 (curve 2) and χ = 0.73 (curve
3).

The complete bifurcation diagram with the light intensity and the ellipticity as con-

trol parameters has been calculated rigorously. We have found that the quasiperiodic

regime extends from the circular polarization to the elliptical one down to the value

χ = 0.72. However, in the latter case the spectra of the dynamical variables become

more complicated although they are still characterized in terms of two distinct frequen-

cies associated with precession and nutation. As in the circular case the quasiperiodic

states appear in a supercritical Hopf bifurcation. Experimental observations have con-

firmed the existence of the new regime and its occurrence, in a small range of ellipticity

close to circular polarization.





Chapter 4

Influence of the backflow effect on

the orientational dynamics induced

by light in nematics

We have seen in previous chapters that the director dynamics in a nematic is very rich

when intense light propagates through it. However, in the theoretical models described

up to now the velocity field was supposed to be zero v = 0. The aim of this chapter

is to clarify the influence of the backflow effect (at least in one particular geometry).

Thereby, for the first time a full theory is developed for the nonlinear behavior of a

nematic starting from the nematodynamic equations, which eventually could be used

for a quantitative comparison with experiment. The same problem will be considered

here as in Chapter 2 (see also Fig. 2.1) but with the inclusion of flow.

4.1 Basic equations

Using the macroscopic approach for the nematic developed in [57,58] the Navier-Stokes

equation for the velocity v can be written as [59]:

ρm (∂t + v · ∇)vi = −∇j(p δij + πij + T visc
ij ) , (4.1)

where ρm and p are the density of the LC and the pressure respectively. πij is the

Ericksen stress tensor 1 defined as:

πij =
∂F

∂(∂jnk)
· ∂ink i = x, y, z (4.2)

1summation over doubly occurring indices is assumed.

57
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with the free energy density F [see Eq. (1.5)]. The viscous stress tensor T visc
ij in Eq.

(4.1)

−T visc
ij = α1ninjnknlAkl + α2njNi + α3niNj + α4Aij + α5njnkAki + α6ninkAkj (4.3)

is written in terms of the six Leslie coefficients αi [58], the symmetric strain-rate tensor

Aij and the vector N, which gives the rate of change of the director relative to the

fluid:

Aij = (∂ivj + ∂jvi)/2 , (4.4)

N = (∂t + v · ∇)n − ω × n .

Here ω = (∇ × v)/2 is the local fluid rotation. The Leslie coefficients are linked by

the Parodi relation [60]:

α2 + α3 = α6 − α5 . (4.5)

In addition we assume incompressibility of the fluid (the density ρm is constant):

∇ · v = 0 . (4.6)

The equation for the director n that is coupled with the equation for the velocity v

Eq. (4.1) is:

γ1(∂t + v · ∇ − ω×)n = −δ⊥ (γ2An + h) , (4.7)

where γ1 = α3 − α2 and γ2 = α3 + α2. The projection tensor δ⊥ and the molecular

field h were already introduced in Chapter 1 [see Eqs. (1.4), (1.5)]. One can see that

in the absence of the velocity field, v = 0, Eq. (4.7) reduces to Eq. (1.4). If the

nematic is initially at rest and the director n is driven by external forces (for instance

by an optical field), then due to the coupling of Eqs. (4.1,4.7) a macroscopic flow can

eventually appear. Such a flow that appears as a result of director reorientation is

called backflow.

4.2 Adiabatic elimination of the flow field

From now on we assume that all physical quantities depend on (z, t) only. Then from

Eq. (4.6) and the no-slip boundary conditions

v|z=0,L = 0 (4.8)
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one can immediately conclude that the z component of the velocity vanishes:

v = (vx(z, t), vy(z, t), 0) , (4.9)

so v is parallel to the plane of the layer. Moreover, all convective derivatives v ·∇ also

vanish.

We may distinguish two time scales: one is the director relaxation time τ , the other

the momentum diffusion time τvisc which is associated with the relaxation of v

τ =
γ1L

2

π2K3
, τvisc =

ρmL
2

γ1
. (4.10)

Typically τ ∼ 1s and τvisc ∼ 10−6 s. Using the fact that τvisc � τ the Navier-Stokes

equation (4.1) can be considerably simplified as the velocity follows adiabatically the

motion of the director. Thus the time derivatives ∂tvi in Eq. (4.1) can be neglected

and the whole l. h. s. of Eq. (4.1) vanishes. In the absence of x, y dependence the

only contributions to Eq. (4.1) come from j = z. Finally, taking into account that

πxz = πyz = 0 [see Eq. (4.2)] the following relations are obtained from Eq. (4.1):

−T visc
xz (z, t) = C1(t)

−T visc
yz (z, t) = C2(t) , (4.11)

where C1(t) and C2(t) are functions that do not depend on z and will be fixed by the

boundary conditions. The third equation following from Eq. (4.1) can be used to find

the pressure p(z, t) but this is not of interest here. Straightforward calculations of T visc
xz

and T visc
yz from Eqs. (4.3) together with Eqs. (4.11) give the following equations:

−T visc
xz (z, t) = [2α1n

2
xn

2
z + (α5 − α2)n

2
z + (α3 + α6)n

2
x + α4)]

U

2
+

nxny[2α1n
2
z + α3 + α6]

V

2
+ α2nz∂tnx + α3nx∂tnz = C1(t) (4.12)

−T visc
yz (z, t) = [2α1n

2
yn

2
z + (α5 − α2)n

2
z + (α3 + α6)n

2
y + α4)]

V

2
+

nxny[2α1n
2
z + α3 + α6]

U

2
+ α2nz∂tny + α3ny∂tnz = C2(t) , (4.13)

where U = ∂zvx and V = ∂zvy, and the explicit dependence of the variables on (z, t) is

suppressed for brevity. Note that the equation for T visc
yz can be obtained from the one

for T visc
xz by interchanging the indices x and y.
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Table 4.1. Relationship between dimension and dimensionless quantities.

quantity physical dimensionless

length z zπ/L

wavevector k0 k0L/π

time t t/τ a

viscosity coefficients αi αi/γ1

velocity v vπτ/L

aτ is the director relaxation time defined in Eq. (4.10).

Next we consider the director equation (4.7). We write n in terms of spherical angles

Θ and Φ, see Eq. (2.1), and insert this into Eq. (4.7). Then, performing the same

manipulations that lead to Eqs. (2.4) (see Sec. 2.1) and introducing dimensionless

quantities according to Table 4.1 the following equations for Θ and Φ can be derived:

∂tΘ + µ (U cos Φ + V sin Φ) = LΘ (4.14)

∂tΦ + α2 cot Θ (V cos Φ − U sin Φ) = LΦ ,

where µ = α2 −γ2 sin2 Θ and LΘ, LΦ are given by Eqs. (2.5). Note that starting from

Eqs. (4.14) all quantities will be dimensionless, although the same symbols for them

have been kept (see Table 4.1).

After introducing the (Θ,Φ) representation in Eqs. (4.12,4.13) we use Eqs. (4.14)

to eliminate the time derivatives of the director. Then the equations for the velocity

gradients U, V can be written as:


g1 a

a g2






U

V


 +



f1

f2


 =



C1

C2


 , (4.15)

where

2g1 = g11 + g12 cos2 Φ (4.16)

2g2 = g11 + g12 sin2 Φ

2a = g12 sin Φ cos Φ .

Here g11, g12 depend on Θ only:

g11 =
(
[α5 − α2 − 2α2

2] cos2 Θ + α4

)
(4.17)

g12 =
(
α5 − α2γ2 + 2[α1 + γ2

2 ] cos2 Θ
)
sin2 Θ .
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Moreover

f1 = µ cosΦLΘ − α2

2
sin Φ sin 2ΘLΦ (4.18)

f2 = µ sinΦLΘ +
α2

2
cos Φ sin 2ΘLΦ .

One can invert the matrix in Eqs. (4.15) and thus solve for U , V :


U

V


 =

1

g1g2 − a2



g2 (C1 − f1) − a (C2 − f2)

−a (C1 − f1) + g1 (C2 − f2)


 . (4.19)

Next we use (4.19) to construct the linear combinations of U and V appearing in Eqs.

(4.14):

U cos Φ + V sin Φ =
2

g11 + g12
{C1 cos Φ + C2 sin Φ − µLΘ}

(4.20)

V cos Φ − U sin Φ =
1

g11
{2(C2 cos Φ − C1 sin Φ) − α2 sin 2ΘLΦ} .

Finally, we substitute Eqs. (4.20) into Eqs. (4.14) to eliminate U, V from the director

equations:

∂tΘ =

[
1 +

2µ2

g11 + g12

]
LΘ − 2µ (C1 cos Φ + C2 sin Φ)

g11 + g12
(4.21)

∂tΦ =

[
1 +

2α2
2 cos2 Θ

g11

]
LΦ +

2α2 cot Θ (C1 sin Φ − C2 cos Φ)

g11
. (4.22)

Equations (4.21, 4.22) still contain the unknown quantities C1(t), C2(t). They can be

found by integrating Eqs. (4.19) with respect to z from 0 to π (z = π corresponds to

z = L in normalized units). The integral of the left hand side
π∫

0

Udz =

π∫

0

V dz = 0 (4.23)

vanishes due to the boundary conditions Eqs. (4.8). Thus a set of linear equations for

C1, C2 is obtained. Then we write Φ as Φ = Φ0(t) + Φd(z, t), where Φ0(t) describes

the pure rotation and Φd(z, t) contains the rest [see Eq. (2.12)]. Straightforward

calculations give the following expressions for the linear combinations of C1, C2 needed

in Eqs. (4.21), (4.22):

C1 cos Φ + C2 sin Φ = 2
[I1(I4 + I5) − I2I3] sin Φd + [I2(I4 − I5) + I1I3] cos Φd

I2
5 − I2

3 − I2
4

(4.24)

C1 sin Φ − C2 cos Φ = 2
[I2(I4 − I5) + I1I3] sin Φd + [−I1(I4 + I5) + I2I3] cos Φd

I2
5 − I2

3 − I2
4
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with

I1 =

π∫

0

dz

{
α2 sin 2ΘLΦ cos Φd

2g11

+
µLΘ sin Φd

g11 + g12

}
,

I2 =

π∫

0

dz

{
α2 sin 2ΘLΦ sin Φd

2g11

− µLΘ cos Φd

g11 + g12

}
,

I3 =

π∫

0

dz
g12 sin 2Φd

g11(g11 + g12)
, I4 = −

π∫

0

dz
g12 cos 2Φd

g11(g11 + g12)
, (4.25)

I5 =

π∫

0

dz
2g11 + g12

g11(g11 + g12)
.

It is important that Φ0(t) drops out from Eqs. (4.24) and, as a consequence, from

the director equations Eqs. (4.21, 4.22). Thus, in the case of circularly polarized light

the statement about the invariance with respect to rotations around the z-axis (2.8)

of the coupled director and field equations Eqs. (4.21, 4.22), (A.15) together with the

boundary conditions (2.2), (2.7) remains intact when including backflow (as it must).

It should be noted that sometimes (for simplicity) the following unrealistic boundary

conditions are used for the velocity gradients [61]

U |z=0,L = V |z=0,L = 0 (4.26)

instead of (4.8) (so-called stress-free boundaries). One can immediately conclude in

this case from Eqs. (4.12, 4.13) that T visc
xz |z=0,L = T visc

yz |z=0,L = 0. Equations (4.11)

then give C1 = C2 = 0. Finally, the director equations Eqs. (4.21, 4.22) are con-

siderably simplified and the backflow effect manifests itself just as a renormalization

of the viscosity γ1. However, such boundary conditions cannot be realized in a real

experiment.

The procedure of adiabatic elimination of the velocity field from the director equations

was used for instance when electrically driven twisted [62–65] or hybrid [66] nematic

cells were studied. (There the procedure is simpler.) An electric field with a strength

equal to several times the Fréedericksz threshold value was applied for some time to the

layer [63], resulting in a stationary deformation. When the applied field was switched

off, the director tilt angle became greater than π/2 in the bulk before relaxing back to

zero. Such an interesting phenomena (the so called ”optical bounce”) can be accounted

for only if the backflow within the plane of the layer is taken into account. Another

example of the use of the method of velocity elimination is the study of the electric-

field-induced splay Fréedericksz transition [67].
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4.3 Linear stability analysis of the basic state

The next step is to compare the results of the linear stability analysis around the

homeotropic state for the cases with and without backflow. Similar to Sec. 2.2 we

linearize Eq. (4.21) in Θ. Using Eq. (2.9) we can write the linear part of LΘ as

LΘ = ∂2
z (Θ) + ρΘ . (4.27)

Linearization of the terms proportional to C1, C2 leads to the formula

C1 cos Φ + C2 sin Φ = −2I2
I5

, (4.28)

where I2 and I5 are the integrals defined in (4.25). In linear approximation they are

given by

I2 = − b

2α2(1 − b)

π∫

0

dzLΘ, I5 =
πb

α2
2(1 − b)

(4.29)

with

b =
2α2

2

α4 + α5 − α2
=
α2

2

η1
> 0 . (4.30)

Here η1 is a Miesowicz effective viscosity [37]. Thus, the right-handside of Eq. (4.28)

is independent of Φ which shows that Φ does not appear in the linearized Eq. (4.21).

This is a consequence of the fact that Φ is not defined for the homeotropic state (see

also Sec. 2.2). Finally, the linearized equation Eq. (4.21) has the form

(1 − b) ∂t(Θ) = LΘ − b

π

π∫

0

dzLΘ . (4.31)

We look for solutions in the form

Θ(z, t) = Θ(z)eσt , (4.32)

where σ is the growth rate and then obtain from Eqs. (4.27, 4.31)

∂2
z (Θ(z)) + [ρ− σ(1 − b)] Θ(z) − b

π

π∫

0

dz[∂2
z (Θ(z)) + ρΘ(z)] = 0 . (4.33)

Taking into account the boundary conditions Θ|z=0,π = 0, Eq. (4.33) is solved by

Θ = − cos
[π
2
δ
]

+ cos
[
δ
(π

2
− z

)]
, (4.34)
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Table 4.2. Viscosity coefficients for the nematic 5CB at T = 26◦C (see G. Ahlers in [16]).
α6 = α2 + α3 + α5 (Onsager relation).

viscosities α1 α2 α3 α4 α5

in units

of dyn · s/cm2 -0.066 -0.77 -0.042 0.634 0.624

normalized to γ1 -0.091 -1.058 -0.058 0.871 0.857

where δ(ρ) satisfies the transcendental equation

2b(δ2 − ρ) sin
[π
2
δ
]

+ δ(bρ− δ2) cos
[π
2
δ
]

= 0 (4.35)

and

σ =
ρ− δ2

1 − b
. (4.36)

Noting that ρ = δ = 1 is a solution of Eq. (4.35) we expand the equation with respect

to δ and ρ around this point. To lowest order one finds:

δ = 1 +
4b(ρ− 1)

π2(1 − b) + 8b
. (4.37)

Finally, the growth rate σ̃ = σ/τ in physical units can be written as:

σ̃ =
ρ− 1

τξ
, (4.38)

where

ξ = (1 − b)

(
1 +

8

π2

b

1 − b

)
= 1 −

(
1 − 8

π2

)
α2

2

η1
' 1 − 0.19

α2
2

η1
. (4.39)

One can see from Eq. (4.38) that the homeotropic state looses stability at ρ = 1.

Equation (4.38) corresponds to Eq. (2.11) with τ replaced by τξ, or, equivalently,

γ1 replaced by γ1ξ. Thus within the linear stability analysis backflow results in a

renormalization of the rotational viscosity γ1 (in fact a reduction).

In the calculations we took the viscosity coefficients for the nematic 5CB (see Table

4.2). For these parameters the value of ξ turns out to be ξ ' 0.85. It is worth noting

that the use of the stress-free boundary conditions [see Eq. (4.26)] leads to a different

factor ξ = 1 − b ' 0.20 for the parameters used. Such a significant decrease of γ1 is

incompatible with the experiments.
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Figure 4.1. ∆/2π versus ρ in logarithmic scale for the case with and without backflow.
The latter case is also shown in Fig. 2.2(a). Solid (dashed) curves correspond to stable
(unstable) solutions.

Figure 4.2. Precession frequency f0 versus ρ for the case with and without backflow. The
latter case is shown in Fig. 2.5(a). Solid (dashed) curves correspond to stable (unstable)
solutions.
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4.4 Simulations

In order to investigate the full bifurcation scenario reported in Chapter 2 we simulated

the system of coupled nematodynamic equations after the elimination of the velocity

gradients from the director equations that consist of i) director equations (4.21, 4.22)

with the boundary conditions (2.7); ii) light field equations (A.15) with the boundary

conditions (2.2). For this purpose we expand Θ and Φ with respect to the trial functions

(2.12) and perform the projection procedure described in Sec. 2.3 that eventually leads

to a set of coupled ODE’s for the modes Θn, Φn [see also Eqs. (2.15)]. We then solved

the ODEs using the Runge-Kutta method as was done before. It should be noted that

the procedure of numerical integration becomes more complicated compared to the

case without backflow because of the appearance of the integrals (4.25) that have to

be evaluated at each time step.

In Fig. 4.1 the phase delay ∆ versus ρ is shown for the case with and without flow.

Clearly ∆ remains almost the same in the regimes with uniform director precession

(UP1, UP2). However, the regime of nonuniform director precession (NUP) shifts to

higher intensities. The thresholds for the NUP and for the UP2 regimes (see Sec. 2.4)

turns out to be ρ2 = 1.74 and ρ3 = 2.4 instead of ρ2 = 1.45 and ρ3 = 1.75 reported

in Chapter 2. Thus the backflow leads to a quantitative change of the bifurcation

scenario. In Fig. 4.2 the precession frequency f0 versus ρ is shown for the case with

and without backflow. The backflow results in an increase of f0 because γ1 effectively

decreases.

After integrating Eqs. (4.20) with respect to z, the expressions for the velocity com-

ponents can be easily found. In Fig. 4.3 typical profiles for the velocity component vx

versus z (in normalized units) are shown for a UP1, UP2 and NUP state. One can see

that the amplitude of the velocity in the NUP regime is significantly larger than that

for the UP1 regime.

An interesting and, at first sight, surprising fact is, that for the UP2 state, vx oscillates

fairly rapidly across the cell. The reason is that the interference structure of o and e

light for UP2 states leads to an oscillating behavior of the electric part of the torque

[see the last term in Eq. (2.5) for LΦ] resulting in a similar structure in ∂zΦ [see Eq.

(2.28)]. Since LΦ also appears in the expressions for the velocity gradients (4.20), it

leads to a similar behavior of vx. This is valid only if ∆ = α(π) is large as is the case

for the UP2 states. For instance ∆/2π ' 22.5 for ρ = 1.81, see Fig. 4.1. The director

profiles, however, do not exhibit such an oscillatory behavior but are characterized by

an abrupt change of the derivatives at some points. Since in the UP1 and NUP regimes

∆ is always less than 2π the velocity field changes sign of most one time.
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−0.1
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0.2

v x

Figure 4.3. Profiles of vx inside the cell at some time t when vx is maximal. Long-dashed
line: UP1 state (ρ = 1.70). Solid line: NUP state (ρ = 1.81). Dashed line: UP2 state
(ρ = 1.81). The dimensionless velocity vx ' 0.2 corresponds to 1µm/s.
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Figure 4.4. Typical phase portrait in the (vx, vy) plane for NUP regime (ρ = 1.90) at
some fixed values of z (not at the middle of the cell).
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In Fig. 4.4 the phase portrait in the (vx, vy) plane for the NUP regime is shown.

This trajectory is not closed because the flow (as the director) is characterized by two

frequencies f0 (precession) and f1 (nutation) as for the case without backflow. It should

be pointed out that the time average of vx and vy is zero because we do not have an

external flow.

4.5 Discussion

In this chapter we have shown the influence of the backflow effect on the director dy-

namics when driven by circularly polarized light. For this purpose we have performed

a linear stability analysis around the basic state in order to assess the viscosity re-

duction factor. Then we have simulated the full set of nematodynamic equations and

demonstrated that backflow leads to quantitative changes in the dynamical scenario. It

turns out that the regime of nonuniform precession shifts to higher light intensities and

exists in a larger interval. However, the experimental values of the thresholds ρ2, ρ3

are even smaller than that given by the theory without backflow. We believe that the

discrepancy between the theoretical predictions and the experiment is mainly due to

the fact that in the experiments one was far away from realizing the large-aspect ratio

case (the beam size was of the order of the layer thickness). Hopefully, in future ex-

periments with large-aspect ratio systems our predictions will be tested quantitatively.

We have found an anticipated spatial oscillation of the backflow in the UP2 regime. It

results from spatial oscillations of the director twist ∂zΦ, which are a consequence of

oscillations in the torque resulting from interference phenomena between ordinary and

extraordinary light. The structure in the director twist is present also when backflow is

neglected, i.e. in the calculation of Chapter 2. Backflow acts as a sensitive diagnostic

to detect it.



Chapter 5

Pattern forming instability induced

by light in pure and dye-doped

nematics

In this chapter a theoretical study of the instabilities induced by a linearly polarized

ordinary light wave incident at a small oblique angle on a thin layer of homeotropically

oriented nematic liquid crystal with special emphasis on the dye-doped case will be dis-

cussed. The spatially periodic Hopf bifurcation that occurs as the secondary instability

after the stationary Fréedericksz transition is analyzed.

5.1 Basic state

We consider a linearly-polarized plane wave incident at a small oblique angle β0 on a

layer of dye-doped nematic LC which has initially homeotropic alignment. The light is

polarized along the y-axis i.e., we deal with an ordinary wave. We introduce the angles

θ(z, t) and ϕ(z, t) (see Fig. 5.1) so that

n = (sin θ, cos θ sinϕ, cos θ cosϕ). (5.1)

We substitute into the Eqs. (1.6,1.7) the expression (5.1) for the director to derive a

set of two PDEs for θ, ϕ. These equations are presented explicitly in Appendix B.

It is easily seen from Eqs. (1.16-1.17) that in the undistorted LC (θ = ϕ = 0) the light

maintains its polarization inside the layer, so that we have only a nonzero y-component

of the electric field E0y that obeys the equation:

∂2
zE0y + k2

0(ε⊥ + iγ⊥ − s2
0)E0y = 0 . (5.2)

69



70 Pattern forming instability induced by light in pure and dye-doped nematics

z
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E

Figure 5.1. Geometry of the setup: linearly polarized light along the y-direction incident
at angle β0 on a nematic LC layer with the director n0 ‖ z (homeotropic state). The
components of the director n are described in terms of the angles θ, ϕ (θ = ϕ = 0 in the
homeotropic state).

The solution of this equation is given by

E0y(z) = E0e
ikzz , (5.3)

where E0 is the amplitude of the incident electric field and

kz = kRe + ikIm ' k0

√
ε⊥ − s2

0 +
iγ⊥k0

2
√
ε⊥ − s2

0

. (5.4)

The terms of the order of [γ⊥/(ε⊥ − s2
0)]

2
in kz are neglected because γ⊥ � ε⊥. We

will examine the case ξeff > 0 (the factor appearing before the optical torque) so that

the preferred orientation corresponds to the director parallel to the electric field n||E.

Since in our geometry initially n ⊥ E, the homeotropic state will cease to be stable

above some critical intensity of the incident light. The reorientation of the LC then

leads to modification of the electric field polarization inside the LC.

5.2 Linearization of the equations around the basic

state

As can be shown from Eqs. (B.1,B.2) in the linear approximation θ remains zero and

the linearized equation of motion for ϕ(z, t) has the following simple form:

γ1∂tϕ = K3∂
2
zϕ+

(εa + ζ)

16π
(2 | E0y |2 ϕ+ E∗

1zE0y + E1zE
∗
0y), (5.5)

where E1z is the z-component of the field that perturbed by director reorientation (cal-

culated to first order in ϕ). Straightforward calculations yield the following equation
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for E1z(z) from Eqs. (1.16-1.17):

(ε‖ + iγ‖)
d2E1z

dz2
+ k2

0(ε⊥ + iγ⊥)(ε‖ + iγ‖ − s2
0)E1z + (εa + iγa)

d2(ϕE0y)

dz2
+

(5.6)

k2
0(εa + iγa)(ε⊥ + iγ⊥)ϕE0y = 0 .

Substituting E1z(z) into Eq. (5.6) in the form

E1z(z) = E(z)eikzz, (5.7)

with kz given by (5.4) and taking into account that k0L � 1 (L is the width of the

layer), a first-order ODE for E(z) that varies slowly with z on the scale k−1
0 can be

derived:

y2∂zE(z) + y3E(z) + y1∂zϕ(z) + y3E0ϕ(z) = 0 , (5.8)

where

y1 =
i√
ε⊥

{
2(εa + iγa)ε⊥ − εaγ⊥ −

(
εa + i

[
γa −

εaγ⊥
2ε⊥

])
s2
0

}

(5.9)

y2 = y1 +
√
ε⊥(2iε⊥ − 3γ⊥) +

(γ⊥ − 2iε⊥)s2
0

2
√
ε⊥

, y3 = k0(εa + iγa)s
2
0 .

The terms with second derivatives ∂2
zE(z) and ∂2

zϕ(z) appear without the prefactor

k0 and can be neglected. This approximation corresponds to the so-called Geometric

Optics Approximation [2]. In (5.9) only the linear terms in γa, γ⊥ and the terms up to

s4
0 were kept (γa, γ⊥ � 1, s4

0 � 1). Keeping in mind that E(0) = 0 and ϕ(0) = 0 we

derived the following equation for E(z):

E(z) = −y1E0

y2

ϕ(z) +
(y1 − y2)y3E0

y2
2

z∫

0

ey3/y2(z′−z)ϕ(z′)dz′ . (5.10)

Finally the real part of E(z) can be found from Eq. (5.10):

Re[E(z)] =
E0

εa + ε⊥
× (5.11)



−εaϕ(z) +

πκ

L
ε⊥

z∫

0

[
ψ cos(

πκ

L
(z′ − z)) + sin(κ(z′ − z))

]
e(π/L)ξκ(z′−z)ϕ(z′, t)dz′



 ,

where the coefficients ψ, ξ, κ are defined as:

ψ = −ε
2
aγ⊥ − 3εaε⊥γ⊥ + 2γaε

2
⊥ − 2γaε⊥εa

2 (εa + ε⊥) εaε⊥
, ξ =

2γaε
2
⊥ − 3εaε⊥γ⊥ − ε2

aγ⊥
2 (εa + ε⊥) εaε⊥

,

κ =
L

π

s2
0εak0

2
√
ε⊥(ε⊥ + εa)

. (5.12)



72 Pattern forming instability induced by light in pure and dye-doped nematics

One can see from Eq. (5.12) that the coefficients ψ and ξ appear because of the

absorption of the dye only and they vanish for the case of a pure LC. κπ is (to a very

good approximation) the phase shift between the ordinary and the extraordinary wave

induced by the layer in the undisturbed homeotropically aligned LC.

We may now rewrite Eq. (5.5) in terms of Re[E(z)] taking into account Eq. (5.3) for

E0y, Eq. (5.4) for kz and Eq. (5.7) for E1z:

γ1∂tϕ(z, t) = K3∂
2
zϕ(z, t) +

(εa + ζ)E2
0e

−2kImz

8π

{
ϕ(z, t) +

Re[E(z)])

E0

}
. (5.13)

Substituting the expression for Re[E(z)] [see Eq. (5.11)] into Eq. (5.13) the following

integro-differential equation for ϕ can be derived:

τ∂tϕ(z, t) =

(
L

π

)2

∂2
zϕ(z, t) + ρ

{(πκ
L

) ∫ z

0

[
ψ cos

(πκ
L

(z′ − z)
)

+ sin
(πκ
L

(z′ − z)
)]

×e π
L

ξκ(z′−z)ϕ(z′, t)dz′ + ϕ(z, t)
}
e−2kImz, (5.14)

where the parameter τ is the characteristic time of the director motion defined as:

τ =
γ1L

2

π2K3
(5.15)

and ρ is the normalized intensity given by:

ρ =
I

Il
, with Il =

π2

L2

c(ε⊥ + εa)K3

εa
√
ε⊥η

, η =
εa + ζ

εa

, (5.16)

where I is the intensity of the incident light.

For perpendicular incidence and for a pure nematic [η = 1, γ⊥ = γ‖ = 0] Eq. (5.14)

reduces to:

τ∂tϕ(z, t) =

(
L

π

)2

∂2
zϕ(z, t) + ρϕ(z, t) . (5.17)

Taking into account that Eq. (5.17) has the same form as Eqs. (2.9) [except in former

case it is not normalized] one can conclude that the basic state looses stability at ρ = 1

[see also Eq. (2.11)]. Thus Il [see Eq. (5.16)] for η = 1 coincides with the threshold

intensity of the LIFT for a pure nematic at perpendicular incidence [2].

Note that for a pure nematic Eq. (5.14) reduces to the one obtained in [68].
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5.3 Approximate stability analysis of the basic state

We use a two-mode expansion with respect to z for the angle ϕ(z, t) with the boundary

conditions ϕ(z = 0) = ϕ(z = L) = 0:

ϕ(z, t) = A1(t) sin
(πz
L

)
+ A2(t) sin

(
2πz

L

)
, (5.18)

where A1 and A2 are time-dependent amplitudes. This is motivated by the fact that

the distorted state is asymmetric with respect to the center of the layer because of

absorption and the perturbation of the light polarization inside the layer. Therefore

we have to include at least one mode that is symmetric and one mode that is antisym-

metric with respect to the center of the layer. After projecting Eq.(5.14) onto the trial

functions we have a system of two equations for the modes A1 and A2:

τ
dA1

dt
= Λ11A1 + Λ12A2, τ

dA2

dt
= Λ21A1 + Λ22A2, (5.19)

where the elements of the matrix Λij depend on the material parameters and the

control parameters ρ and κ (which is proportional to s2
0). The procedure of deriving

Λij is straightforward and the expressions for the Λij are presented in the Appendix C.

We look for solutions proportional to exp(σt), where σ is the growth rate defined as

follows:

σ =
Tr(Λ) ±

√
Tr2(Λ) − 4 det(Λ)

2
. (5.20)

The basic state is stable for Re(σ) < 0. The stability diagram in the (κ, ρ) plane can

now be calculated for any given set of material parameters of the LC. As an example

we consider the nematic 5CB doped with the dye AD1 at 0.1% concentration. We used

the following values of material parameters at the temperature T = 24◦: αo = 42 cm−1,

no = 1.53, αe = 190 cm−1, ne = 1.71, (absorption coefficients and refractive indices of

the ordinary and extraordinary light, respectively), λ = 633 nm (wavelength of laser),

ζ = 58 [22], γ = 0.845 dyn · s/cm2 , K1 = 0.64 · 10−6 dyn, K2 = 0.42 · 10−6 dyn, K3 =

0.86 · 10−6 dyn (see G. Ahlers in [16]) ; the calculations are made for a layer thickness

of 50 µm. For these parameters Il = 33.21 W/cm2, τ = 2.49 s.

The stability diagram is depicted in Fig. 5.2. The solid line corresponds to a pitchfork

bifurcation (detΛ(κ, ρ) = 0 while TrΛ(κ, ρ) < 0), and the dashed one corresponds to a

Hopf bifurcation of the homeotropic state (TrΛ(κ, ρ) = 0 while detΛ(κ, ρ) > 0). These

lines divide the (κ, ρ) plane into a stable and an unstable region of the homeotropic

alignment. They join in a so-called Takens-Bogdanov point where det[Λ(κ, ρ)] =
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Tr[Λ(κ, ρ)] = 0. The approximate value of this point for the pure nematic is κTB =

2/
√

13, ρTB = 13/5 (see [34]). For the dye-doped nematic this value depends on ab-

sorption and is given by an approximate formula Eq. (C.3). For the layer thickness

and material parameters given above this value is κTB ' 0.6, ρTB ' 3.

At this point it is interesting to note that the homeotropic state represents a stable

node in region I where [TrΛ(κ, ρ)]2 > 4 detΛ(κ, ρ) with TrΛ(κ, ρ) < 0 and a stable

focus in region II where [TrΛ(κ, ρ)]2 < 4 detΛ(κ, ρ) with TrΛ(κ, ρ) < 0. In region III

the homeotropic state is unstable [see Fig. 5.2a)].

There are two differences compared to the case of a pure LC. First, the enhancement of

the orientational optical nonlinearity described by the parameter ζ leads to a ”renor-

malization”of the threshold intensity (see Eq. (5.16)). (However, since Fig. 5.2 is

plotted with the renormalized threshold intensity, this fact alone would not change the

stability diagram shown there). Second, absorption gives rise to attenuation of the

field inside the nematic. This results in a shift of the line of primary instability to the

region of higher intensities as is shown in Fig. 5.2b). From this figure one can see the

quantitative difference between the case when the absorption is neglected (dashed-dot

lines) and when the absorption is taken into account (solid and dashed lines). Note

that the critical intensity ρth for perpendicular incidence thus becomes larger than 1.

We may expand Λpure
ij (see Appendix C.1) with respect to κ in oder to get an ap-

proximate formula for the threshold ρ(κ) versus normalized angle κ for a case without

absorption [see the dashed-dot lines in Fig. 5.2b)]. From the conditions detΛ = 0

and TrΛ = 0 one can derive the intensity for the stationary and the Hopf bifurcation,

respectively:

ρst =
20 − 13κ2 ±

√
3(4 − κ2)(12 − 35κ2)

2[4 − κ2(1 − κ2)]
, ρH =

20

8 − κ2
. (5.21)

We can also find the approximate value of the threshold ρth for the case with absorption

for perpendicular incidence due to the fact that then Λabs
ij is greatly simplified [see Eq.

(C.2)]. In this case we have from Eq. (C.1):

Λ11 = −1 + (1 − β)ρ, Λ12 = Λ21 =
32βρ

9π2
, Λ22 = −4 + (1 − β)ρ , (5.22)

where β = kImL [see Eq. (5.4)]. Eventually Eq. (5.22) leads to an approximate value

for ρth:

ρth =
5(1 − β) −

√
9 − 18β + 25β2

2(1 − 2β)
. (5.23)
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Figure 5.2. Stability diagram of the homeotropic in the (κ, ρ) plane.
a) Solid line [detΛ(κ, ρ) = 0]: stationary bifurcation;
dashed line [TrΛ(κ, ρ) = 0]: Hopf bifurcation.
The dash-dotted line is defined by [TrΛ(κ, ρ)]2 − 4detΛ(κ, ρ) = 0.
I, II are the regions of stability of the homeotropic state.
III is the region where the homeotropic state is unstable. TB is the Takens-Bogdanov
point [TrΛ(κ, ρ) = detΛ(κ, ρ) = 0].
b) H is the region of stability of the homeotropic state. Solid and dashed lines correspond
to those in a). The dash-dotted lines are obtained when the absorption effect is neglected.
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5.4 The stationary distorted state

After the homeotropic state looses stability via a stationary bifurcation (at not too

large angle of incidence), the director settles in a stationary distorted state. It is

determined by the second-oder ODEs (B.1,B.2) for θ(z) and ϕ(z) (now these angles

can be of arbitrary magnitude) after inserting ∂tϕ = ∂tθ = 0.

These equations contain the field components which obey Maxwell’s equations (1.17).

It is convenient to write Ψ̄(z) [see (1.18)] using the Oldano formalism developed for

nonabsorbing anisotropic media [69]. In Appendix D we give a detailed description of

this method. Finally we may expand Ψ̄(z) as a combination of two vectors ᾱ2 and ᾱ4,

see (D.5), that correspond to forward propagating ordinary and extraordinary waves

inside the homeotropically aligned LC, respectively

Ψ̄(z) = b2(z)e
ik0a2zᾱ2 + b4(z)e

ik0a4zᾱ4 (5.24)

and write the equations for the light propagation Eqs.(1.17) in terms of the amplitudes

b2(z) and b4(z):





db2
dz

=
ik0

N2

[
P22(z)b2 + b4e

−ik0(a2−a4)zP24(z)
]

db4
dz

=
ik0

N4

[
P44(z)b4 + b2e

−ik0(a4−a2)zP42(z)
]
, (5.25)

where a2, a4, N2, N4 and the functions Pij(z) are given in (D.4), (D.8), and (D.13).

The advantage of the system (5.25) is that we now have only two equations for the

”slow”amplitudes b2(z) and b4(z). So, in total, we have a system of coupled ordinary

differential equations for θ(z), ϕ(z), b2(z) and b4(z) with boundary conditions θ|z=0,L =

ϕ|z=0,L = 0, and initial conditions for the incoming ordinary polarized light b2|z=0 = A0,

b4|z=0 = 0. Here A0 can be related to the normalized intensity ρ defined by Eq. (5.16):

A0 =

√
8π3 (εa + ε⊥) (ε⊥ − s2

0 + iγ⊥)K3ρ

εaε⊥ηL2
, (5.26)

where ρ is the normalized intensity introduced in Eq. (5.16). The equations for θ(z)

and ϕ(z), (B.1,B.2), contain the field combinations ExE
?
x etc. that are related to the

amplitudes b2, b4 by Eqs. (D.14).

The system of ”nematic+field” equations (with boundary conditions) is invariant under

the transformation

[θ, ϕ, Ex, Ey] → [θ,−ϕ,Ex,−Ey] . (5.27)
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owing to the reflection symmetry with respect to the y direction. Since the primary

instability breaks this symmetry, two different distorted states exist, which are mutual

images under this transformation. For perpendicular incidence of the light there is an

additional reflection symmetry with respect to the x direction and, as a consequence,

the system of equations is also invariant under the transformation

[θ, ϕ, Ex, Ey] → [−θ, ϕ,−Ex, Ey] . (5.28)

The system of equations can only be solved numerically. For this purpose we introduced

the new variables dθ/dz, dϕ/dz to transform our set of equations to a system of six

first-oder equations. The main difficulty is that we have a ”two point boundary value

problem” not an ”initial value problem”. Thus we cannot simply start from some

initial values at the beginning and just perform numerical integration to the end. To

solve this system we used the ”shooting method” from the NAG Fortran Library. The

idea of this method is to transform the boundary value problem into an initial value

one. In our case this means that the known values θ|z=L = ϕ|z=L = 0 at the second

boundary z = L are substituted by estimated values dθ/dz|z=0, dϕ/dz|z=0 at the first

one. Then the ”shooting”program improves these estimated values in such a way that

finally the solution satisfies the known boundary conditions at z = L. To guarantee

that we obtain the solution which connects smoothly with the homeotropic state we

started with intensities only slightly above the threshold and tracked the solutions to

larger ρ (for angles β0 for which there is a stationary bifurcation of the homeotropic

state). It should be noted that the derivatives dθ/dz, dϕ/dz are supposed to be small

quantities for the intensities close to the homeotropic threshold because the director

profile is then weakly distorted (for the homeotropic state dθ/dz|z=0 = dϕ/dz|z=0 = 0).

This allows us to choose some small values for the derivatives as estimates and then

the ”shooting”program corrects them. As a control, different starting values for the

derivatives were chosen, which led to the same corrected values of dθ/dz|z=0, dϕ/dz|z=0.

Then, we increased ρ slightly and used the values of dθ/dz|z=0, dϕ/dz|z=0 obtained in

the previous step as an initial estimate. This procedure allowed us to derive the profiles

θ(z), ϕ(z), b2(z) and b4(z) for any κ and ρ above threshold.

As an example the director and field distributions are shown in Figs. 5.3 a) and b).

The symmetrical solution can be obtained by the transformation (5.27).

5.5 Stability analysis of the stationary distorted state

Next we have performed a linear stability analysis of the distorted stationary state

with respect to spatially periodic perturbations in the plane of the nematic layer. We
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Figure 5.3. a) Profiles of the director components nx, ny for the stationary distorted
state.
b) Distortion of the field components inside the nematic layer for the stationary distorted
state. Ez is small compared to Ex, Ey and is not depicted; E0 is the amplitude of the
incident electric field.
Solid lines: β0 = 11◦ (κ = 0.375) and ρ = 2.0;
Dashed lines: β0 = 5◦ (κ = 0.078) and ρ = 1.49;
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write

n = n0(z) + δn(x, y, z, t) = n0(z) + δn(z)eσt+i(qx+py), (5.29)

Ψ̄ = Ψ̄0 + Ψ̄1 =
∑

k=2,4

(bk(z) + δbk(z)e
σt+i(qx+py))eik0akzᾱk,

where δn and δbk are small spatially periodic perturbations with wavenumbers q and

p; σ is the growth rate.

From the equation n2 = 1 follows that n0δn = 0. Thus there are only two independent

components of δn and we expressed δnz(z) in terms of the other components as:

δnz(z) = −n0xδnx(z) + n0yδny(z)

n0z
. (5.30)

Substituting n = n0(z) + δn(x, y, z, t) into the expression for the free energy (1.3)

and retaining the terms up to the second oder in δn the linear equations for δnx(z)

and δny(z) from Eqs. (1.4) have been obtained. These equations contain δnx(z),

δny(z) themselves, their z derivatives up to second oder and δb2,4(z) with complicated

coefficients depending on the stationary distorted state n0(z), b2,4(z) and wavenumbers

q and p.

Also, we have decomposed the matrix Dz [see (D.2)] as Dz = Dz0 + Dz1 , where the

matrix Dz0, corresponds to the stationary state n0(z), and the matrix Dz1 depends

linearly on δn. After linearization of Eqs. (5.25) [using the decomposed form of Dz]

the equations for δb2,4 can be obtained:




d(δb2(z))

dz
=
ik0

N2

(
δb2P

(0)
22 + δb4e

ik0(a4−a2)zP
(0)
24 + b

(0)
2 P

(1)
22 + b

(0)
4 eik0(a4−a2)zP

(1)
24

)

d(δb4(z))

dz
=
ik0

N4

(
δb2e

ik0(a2−a4)zP
(0)
24 + δb4P

(0)
44 + b

(0)
2 eik0(a2−a4)zP

(1)
24 + b

(0)
4 P

(1)
44

)
,

(5.31)

where b
(0)
2 (z), b

(0)
4 (z) are the field amplitudes for the stationary state. Here P

(0)
kj =

ᾱT
k MDz0ᾱj and P

(1)
kj = ᾱT

k MDz1ᾱj are the matrix elements of Dz0 and Dz1 with respect

to the eigenvectors (D.5) respectively, see (D.12).

It should be noted that the wavenumbers q and p appear only in the elastic part of

the director equations and drop out of Eqs. (5.31). In the original Maxwell equations

Eqs. (1.9) the field perturbations contain x, y dependence. However, neglecting the

slow variations is a very good approximation because the corrections are of the oder

q/k0, p/k0 which are expected to be very small. This holds as long as the width of the

layer is much larger then the wavelength of the light.
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To solve the eigenvalue problem for σ we expand δnx,y(z), δb2,4(z) in terms of systems

of functions which satisfy the boundary conditions.

For δn the boundary conditions are δnx,y|z=0,L = 0, thus we write

δn =
∑

k

Ak sin

(
πkz

L

)
. (5.32)

Clearly the boundary conditions for the perturbations of the field amplitudes are

δb2,4|z=0 = 0. One can see that at z = 0, L the r.h.s. of the system (5.31) vanishes so

one also has d(δb2,4)/dz|z=0,L = 0. Therefore we used the expansion

δb =
∑

n

Bn sin2
(πnz

2L

)
. (5.33)

This set of functions is complete but not orthogonal. We also have to truncate these

expansions to a finite number of modes.

After substituting the expansions (5.32, 5.33) into the system of equations for δn, δb

and projecting onto the modes (Galerkin method), the eigenvalue problem for σ be-

comes:

MX = σC X, X =




A

B


 , C =




1 0

0 0


 , (5.34)

where X is the vector of modes An,Bk and the matrix C is a block matrix. 1 is the

unit matrix whose dimension is equal to the sum of the number of modes taken for δnx

and δny. The matrix C appears on the r.h.s. of Eq. (5.34) because of the absence of

time derivatives in Eqs. (5.31). Note that the matrix M in Eq. (5.34) depends on the

stationary state and on p, q.

We have solved the eigenvalue problem numerically to find the neutral surface ρ0(q, p)

(for given angle β0) which is defined by the condition Re(σ(q, p)) = 0. The number of

Galerkin modes was chosen such that the accuracy of the calculated eigenvalues was

better than 0.1% (we took six modes for δn and forty modes for δb). The minimum

of this surface gives the critical intensity ρc=minq,p ρ0(q, p) and the critical wavevector

(qc, pc). Since Ωc = Im(σ) turned out to be nonzero at the minimum, the instability

corresponds to a Hopf bifurcation. The branch of the secondary Hopf instability is

depicted as the dash-dotted line in Fig. 5.4a) and for small angles of incidence in Fig.

5.4b).

It is interesting to note the following tendencies: as the incident angle β0 increases the

critical intensity also increases, but the director and field deformations at the secondary
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instability decrease. This is clearly demonstrated in Figs. 5.3 a), b) where the profiles

of the director components nx, ny and field components Ex, Ey inside the nematic layer

are shown for β0 = 5◦ and β0 = 11◦ for the values of ρ slightly below the secondary

instability [see also Fig. 5.4 a)].

The dimensionless Hopf frequency Ωcτ [τ is defined in Sec. 5.2 by Eq. (5.15)] versus

the normalized parameter κ [proportional to s2
0, see Eq. (5.12)] is shown in Fig. 5.5.

Figure 5.6 shows a typical contour plot of the neutral surface ρ0(q, p). The point

(qcL, pcL) in this figure is the minimum of the surface and as is seen the bifurcation

is inhomogeneous with critical vector (qc, pc) 6= 0. This means that travelling waves

are expected to appear. However ρc is only slightly below the homogeneous threshold

ρ0(q = 0, p = 0). The fact that (qc, pc) 6= 0 is related to the broken reflection symmetry

in the (x, y) plane and will be discussed below.

As was pointed out in Sec. 5.4, for nonzero β0 there are two symmetry-degenerate

stationary distorted states. Clearly the two neutral surfaces are related by changing p

to −p and the critical wave vectors will be (qc, pc) and (qc,−pc). Thus two different

travelling waves with critical vectors (qc,±pc) can be realized depending on which

stationary state will be selected after the homeotropic state loses stability. It can also

be pointed out that with a change of sign of the angle of incidence β0 → −β0, the sign

of qc is also changed qc → −qc.

An interesting situation arises in the limit of normal incidence. One might expect that

for β0 → 0 the wavenumber qc → 0, since in this limit the external symmetry breaking

in the x direction vanishes. However, this turned out not to be the case. The reason

is that then another stationary instability that spontaneously breaks the x-reflection

symmetry intervenes the primary and the Hopf bifurcation. For the parameters of our

computation one has ρth = 1.11, ρc1 = 1.13 (point A in Fig. 5.4b) and ρc2 = 1.17 (point

B in Fig. 5.4b)). One now has four symmetry-degenerate states and consequently four

travelling waves with critical wave vectors (±qc,±pc).

In Fig. 5.7 the nx and ny are shown versus ρ for perpendicular incidence and for

β0 = 0.5◦ [for values of ρ lower than the Hopf bifurcation]. Note that the symmetri-

cal solution can be obtained by the transformation (5.27) and for the perpendicular

case in addition by (5.28). Thus, after the primary pitchfork bifurcation from the

homeotropic to a stationary distorted state that breaks the y → −y reflection symme-

try, for perpendicular incidence we deal with another pitchfork bifurcation at ρ = ρc1

which breaks x → −x reflection symmetry. However this secondary pitchfork bifur-

cation is destroyed in the case of oblique incidence as is shown in Fig. 5.7. Such a

behavior can be interpreted as an imperfect bifurcation [47] with respect to the angle
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Figure 5.4. a) Stability diagram of the homeotropic and stationary distorted states in
the (κ, ρ) plane. H is the region of the homeotropic state. SD is the region of the stationary
distorted state bounded toward large ρ by the secondary Hopf bifurcation (dash-dotted
line). TB is the Takens-Bogdanov point. b) The secondary instability for small angles
of incidence. We show the instabilities of the stationary distorted state for perpendicu-
lar incidence of the light: A: pitchfork bifurcation to a state with nx(z) 6= 0; B: Hopf
bifurcation.
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The critical intensity is ρc = 2.01 with the critical wavevector (qcL, pcL) = (0.11,−0.06);
ρ0(q = 0, p = 0) − ρc = 1.5 · 10−3.



84 Pattern forming instability induced by light in pure and dye-doped nematics

1.05 1.07 1.09 1.11 1.13 1.15 1.17 1.19
ρ

−0.1

0

0.1

0.2

0.3

Aρth

nx

ny

Figure 5.7. Profiles of the director components nx, ny versus ρ at some z inside the
layer (not at the middle). Solid and dashed lines correspond to β0 = 0◦ and β0 = 0.5◦

respectively. ρth is the threshold intensity of the LIFT. Point A has the same meaning as
in Fig. 5.4b).

β0 at ρ = ρc1.

In some further investigations we have changed the ratios between the elastic constants

keeping other material parameters constant and saw the following tendency: for larger

anisotropy of the constants the minimum of the surface becomes deeper and the critical

wavenumbers become larger [see Fig. 5.8a,b)]. The error of the dimensionless critical

wavenumbers qcL, pcL depicted in this figure is less than 10−2.

It can also be shown analytically that in the one-constant approximation (K1 = K2 =

K3) the bifurcation is homogeneous [(qc, pc) = 0] for any κ. This follows from the

fact that then on the right-hand side of the director equations one has only terms

proportional to (p2 + q2)δnx and (p2 + q2)δny. As a consequence, the neutral surface

ρ0(q, p) becomes proportional to p2 + q2, so that the minimum is at (qc, pc) = 0. This

result is completely general and is related to the fact that for K1 = K2 = K3 the

orientational elasticity becomes isotropic [37].

From Fig. 5.8a,b) one can see that qcL, pcL ∼ 0.1. This means that the period of the

structure 2π/qc, 2π/pc ∼ 60L = 0.3 cm. Thus in an experiment the spot size of the
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Figure 5.8. Critical wavenumbers qc, pc versus K2/K3 for different ratios K1/K3 (β0 =
11◦).
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light must be rather large in oder to observe the travelling waves.

5.6 Heating of the nematic due to the dye

An effect of light absorption during the light propagation in dye-doped nematic can

cause significant heating of the LC if the intensity of the light is of the order of the

LIFT threshold [18]. On the other hand, the material parameters of the nematic

such as elastic constants are temperature dependent. Previously, we assumed that the

nematic is maintained at constant temperature (under certain conditions) and took

the material parameters for a fixed temperature. The question is whether such an

assumption is reliable and can be realized in an experiment. To answer this question

we have estimated the maximum temperature difference occurring inside the nematic

5CB doped with the dye AD1 from the steady-state heat conductivity equation. We

considered a cell placed in a thermostage with a temperature T0 that consists of a

nematic layer of a thickness L, sandwiched between two substrates of thickness d.

We considered perpendicular incidence of the light (for simplicity) and assumed that

absorption takes place only inside the nematic and is governed by the law:

I(z) = I0e
−α⊥(z−d), d ≤ z ≤ L + d . (5.35)

Since we deal with the plane-wave approximation the following one-dimensional steady-

state heat conductivity equations in the nematic and substrates can be written:

κs∂
2
zT = 0, 0 ≤ z ≤ d or L + d ≤ z ≤ L + 2d (5.36)

κ||∂
2
zT = −α⊥I(z), d ≤ z ≤ L + d ,

where κ|| is the parallel component of the heat conductivity tensor of the nematic and

κs is the heat conductivity of the substrates. The solutions of Eqs. (5.36) are given by:

Ts1 = C1z + T0, 0 ≤ z ≤ d (5.37)

TN = − I(z)

α⊥κ||
+ C2z + C3, d ≤ z ≤ L + d

Ts2 = C4z + T0, L + d ≤ z ≤ L+ 2d ,

where Ts1 (Ts2) and TN are the temperatures inside the first (second) substrates and

nematic respectively. The unknown constants C1, .., C4 can then be found from the
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usual boundary conditions that are given by continuity conditions of the temperature

and the heat flow at the substrate-nematic interfaces (z = d and z = L + d):

Ts1|z=d = TN |z=d, κs∂zTs1|z=d = κ||∂zTN |z=d (5.38)

TN |z=L+d = Ts2|z=L+d, κ||∂zTN |z=L+d = κs∂zTs2|z=L+d .

For the values of heat conductivities for the nematic we used κ|| = 3.0 · 10−3 W/◦C cm

and for the glass substrates κgl = 1.1 · 10−2 W/◦C cm from [18]. The calculations were

also performed for sapphire substrates (κsap = 0.4 W/◦C cm). We found that for the

range of intensities I = 30− 100 W/cm2 the temperature difference inside the nematic

is no more than a few Kelvins. In such a temperature range, the material parameters

do not change very much so taking them to be constant across the layer is usually

justified.

5.7 Discussion

Finally we remark on the behavior of the system in the nonlinear regime above the

Hopf bifurcation. The system without transverse degrees of freedom has been studied

previously, and various regimes of complex behavior have been discovered. The sec-

ondary bifurcation studied here marks the transition to simple periodic oscillations in

the system without transverse degrees of freedom, which is the first step towards com-

plex behavior. In models [33, 34] and simulations [70], a gluing bifurcation was found

above the secondary Hopf bifurcation, which is a homoclinic bifurcation that restores

the symmetry broken by the Fréedericksz transition. This gluing bifurcation was re-

cently observed experimentally [36]. After this first gluing, complex nonlinear behavior

and eventually chaos was observed in both theory, simulation and experiment [27].

The behavior of the system in the vicinity of the gluing bifurcation, can, however, be

radically different from what was observed in the experiment [36]. In the spatially

restricted system (i.e. the director oscillation induced by a narrow beam as observed

in the experiments) one should observe stochastic behavior in the vicinity of the first

gluing only as a consequence of experimental noise. It has been shown, however, [71,72]

that any spatially extended system, which possesses a homogeneous limit cycle (which is

stable with respect to homogeneous perturbations) becomes unstable as it approaches

a homoclinic bifurcation. This instability is either a phase instability, or a finite-

wavelength period-doubling instability. On these grounds one can expect to observe

very complicated behavior (probably spatio-temporal chaos) in our system already at
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the threshold intensity of the first gluing. This then would be true deterministic chaos,

not merely stochasticity due to noise, as opposed to the spatially restricted case.

We have found the threshold of the LIFT for the homeotropic state and the threshold

of the secondary instability of the stationary distorted state in a nematic LC, including

the dye-doped case, for different incidence angles of the light. In particular we have

demonstrated that the stationary distorted state loses stability in an inhomogeneous

Hopf bifurcation with some nonzero critical wavenumber that leads to the formation

of travelling waves in the plane of the layer.

Our result that (qc, pc) 6= 0 demonstrates a general feature of Hopf bifurcations in

spatially extended systems with broken reflection symmetry, as is the case in the LIFT-

distorted state. Except for special cases, like those where the reflection symmetry can

be restored by going into a moving frame, the neutral surface exhibits the signature

of the broken symmetry. Consequently, at qc = pc = 0 the neutral surface does in

general not have a stationary point, except maybe in special cases, like K1 = K2 = K3.

This general feature was apparently first noted in the context of reaction-diffusion

systems [73, 74].



Summary
I have presented in this thesis a theoretical study of some dynamical phenomena and

orientational transitions induced by intense light in homeotropically oriented nematic

layers. A large number of experiments has been performed in such systems and various

interesting dynamical regimes have been identified. However, systematical theories

capable of describing the observed phenomena have been derived for some cases only.

In other cases oversimplified models exist with limited applicability.

In Chapter 2 I considered the case of a circularly polarized plane light wave incident

perpendicularly on the layer. I have constructed a theory that is capable of describ-

ing the observed regimes of director motion and the transitions between them in de-

tail [43, 46]. The first instability is the Fréedericksz transition from the homeotropic

state to a small-amplitude reoriented state with uniform director precession around the

layer normal. With increasing light intensity, this state destabilizes via a supercritical

Hopf bifurcation and a new frequency in the time Fourier spectra of the dynamical

variables appears. This regime is quasiperiodic and corresponds to a precession and

nutation of the director. As the intensity increases further, this state disappears at a

certain critical value where the period of nutation becomes infinite. There a strongly

hysteretic transition to a state with large reorientation occurs via a homoclinic bi-

furcation. The homoclinic orbit involved is of the simplest type where a limit cycle

collides with a saddle point having one unstable direction. The new state corresponds

to a uniform precession of the director, however, with very large period and with large

reorientation. I have also investigated the influence of an additional static electric field

on the dynamical scenario described above.

In Chapter 3 the treatment is generalized to the case of elliptically polarized light.

The complete bifurcation diagram with the light intensity and the ellipticity as control

parameters has been calculated in the region where rotating states exist. I have shown

[40] that for a fairly narrow region of ellipticities close to circular polarization the first

periodic rotating state loses its stability in a supercritical Hopf bifurcation. I have

found that with increasing light intensity at different ellipticities different sequences of

transitions all finally lead to a state with large director distortion as the intensity is

increased. The nature of this largely distorted state, as well as intermediate regimes

vary with ellipticity. Some of the regimes that appear at lower intensities were studied
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previously, both experimentally and theoretically, but a complete picture up to the

largely distorted regime was missing.

In the theoretical treatments developed in the Chapters above, as in all other treat-

ments, the velocity field induced by the director motion (backflow) has been neglected.

In Chapter 4 I have investigated the influence of backflow on the dynamical scenario

described in Chapter 2 and have shown that the backflow leads to substantial quantita-

tive changes. It turns out that the regime of nonuniform precession shifts to higher light

intensities and exists in a larger interval. I have also found unanticipated spatial oscil-

lations of the backflow across the layer for the state with large director distortion [54].

This is a signature of the interference pattern of the light within the layer. Actually,

in the theory presented, for the first time, a light-induced dynamical phenomenon has

been derived from the full nematodynamic equations. Thus, for the first time, full

quantitative comparison with experiments using a transversally extended laser light

could be done.

Also, in all previous theoretical treatments involving plane wave incident light, it was

assumed that the director distortion does not depend on the coordinates in the plane

of the layer, i.e. one dealt with a one dimensional situation. In Chapter 5 I have

studied the instabilities induced by a linearly polarized ordinary light wave incident

at a small oblique angle allowing for spatial variations of the director in the plane of

the layer and including the case of a dye-doped nematic. It was previously known

that for sufficiently small angles of incidence the homeotropic state looses stability

in a stationary, homogeneous pitchfork bifurcation. I have shown that the resulting

stationary distorted state looses stability via a secondary Hopf bifurcation to spatially

inhomogeneous state (nonzero critical wavenumber) that leads to the formation of

travelling waves in the plane of the layer [55]. The wavelength of these waves depend

on the angle of incidence and the ratios of the elastic constants. It is typically several

times larger than the thickness of the layer.

In conclusion one can state that, while there now exist systematic theories which

give qualitative predictions for experiments, quantitative agreement has not yet been

achieved. The most important reason for this is probably that the beam width used

in experiments is of the order of the thickness of the layer, whereas in the theoretical

treatments an infinite plane wave is assumed. Thus, either the finite lateral extension

of the laser should be included in the theory or transversally extended lasers have to

be used in the experiments. The former is a difficult task, especially when flow is also

included. For the latter extremely powerful lasers are needed, unless appropriately

dye-doped nematic liquid crystals are used. Another interesting problem that could be

approached in the future is the case when the light intensity is periodically modulated.



Appendix A

Representation of the light

propagation in terms of ordinary

and extraordinary waves

In this Appendix an approach where the light propagation is represented by means

of ordinary and extraordinary light is presented. This representation is used for the

perpendicular incidence (s0 = 0). In this case Eqs. (1.17) from the Introduction can

be rewritten as follows:



∂zHy

−∂zHx


 = ik0M



Ex

Ey


 ,



∂zEx

−∂zEy


 = ik0




Hy

−Hx


 , (A.1)

where

M =




εxx −
ε2

xz

εzz
εxy −

εxzεyz

εzz

εxy −
εxzεyz

εzz

εyy −
ε2

yz

εzz



. (A.2)

We can easily derive the second-order ODE for the electric field (the wave equation)

from Eqs. (A.1):

∂2I

∂z2
= −k2

0MI, (A.3)

where

I =



Ex

Ey


 . (A.4)
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The z component of the electric field can be found from the following relation [see Eq.

(1.16)]:

Ez = −εxzEx + εyzEy

εzz

. (A.5)

We write the director in terms of the usual spherical angles n=(sin Θ cosΦ, sin Θ sin Φ,

cos Θ). We then perform a transformation from the basis (ex, ey) into the local basis

(eo, e
⊥
e ) where the matrix M has diagonal form [75]. In this new coordinate system

the field components are the amplitudes of the ordinary Eo and transversal part of the

extraordinary E⊥
e waves [note that E⊥

e = Ee−(Eeez)ez] in the (x,y) plane, respectively,

related to Ex, Ey as follows:

ψ = OI , (A.6)

where

O =



− sin Φ cos Φ

cos Φ sin Φ


 and ψ =



Eo

E⊥
e


 . (A.7)

The matrix O represents the matrix describing rotation by the angle Φ in the (x,y)

plane as is shown in Fig. A.1.

The transversal part of the electric field can be expressed in terms of the two basises

as follows:

E⊥ = Exex + Eyey = E⊥
e e⊥

e + Eoeo . (A.8)

Note that in each plane z = const, the electric fields Ee, Eo and the electric displace-

ments De and Do of the extraordinary and ordinary waves are directed as is depicted

in Fig. A.2.

In the (eo, e
⊥
e ) representation the matrix M has the following form:

M̃ = OMO−1 =



λo 0

0 λe


 , (A.9)

where

λo = ε⊥, λe =
ε⊥(εa + ε⊥)

ε⊥ + εa cos2 Θ
. (A.10)

Taking into account that I is related to ψ [see Eq. (A.6)] as

I = O−1ψ (A.11)
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Φ
n

ex

ey

eo

ez k|| 0

ee
⊥

Figure A.1. Directions of the director n and of the basis vectors ex, ey, eo and e⊥e . The
wave vector k0 is directed along the propagation direction z.

and substituting this expression into Eq. (A.3) the following equation for ψ can be

derived:

∂2
zψ = ∂2

z [O]O−1ψ + 2∂z[O]∂z[O
−1]ψ + 2∂z[O]O−1∂zψ − k2

0M̃ψ . (A.12)

Now we can use the fact that k0 � 1/L and drop the first two terms on the r.h.s. of

Eq. (A.12). On the other hand we have to keep the rest because when applying the

z derivative on ψ the large factor k0 appears. Such an approximation corresponds to

the Geometric Optics Approximation. Finally Eq. (A.12) reduces to:

∂2
zψ = 2∂z[O]O−1∂zψ − k2

0M̃ψ . (A.13)

We look for solutions of Eq. (A.13) in the following form:

Eo = Ao(z)e
ik0

√
λoz, E⊥

e = Ae(z)e
ik0

z
R

0

dz′
√

λe(z′)
, (A.14)

where Ao, Ae are amplitudes that vary slowly with z on the scale k−1
0 . Straightforward

calculations give from Eq. (A.13) the following equations for Ao, Ae:





∂zAo = −(∂zΦ)

√
λe

λo
eiα(z)Ae

∂zAe = −(∂zλe)Ae

4λe

+ (∂zΦ)

√
λo

λe

e−iα(z)Ao

(A.15)
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n

ee
⊥

eo

ez || k 0

Eo ||Do

Ee
⊥ || De Ee

Φey

Figure A.2. Directions of the director n and of the field Eo, Do, Ee and De. The
vectors Ee, De, n and k0 are coplanar.

where α(z) is the phase delay between the ordinary and extraordinary waves induced

by the nematic slice of a thickness z given as:

α(z) = k0

z∫

0

(
√
λe −

√
λo)dz . (A.16)

Without loss of generality, we may choose the x axis along the major axis of the

polarization ellipse of the incident light. In this case the boundary conditions for the

amplitudes Ao, Ae at z = 0 are given by:

|Ao0|2 =
E2

0

2
(1 − cos 2Φ|z=0 cos 2χ) , |Ae0|2 =

E2
0

2
(1 + cos 2Φ|z=0 cos 2χ)

Ae0A
?
o0 = −E

2
0

2
(sin 2Φ|z=0 cos 2χ+ i sin 2χ) , (A.17)

where the ellipticity angle χ (−π/4 ≤ χ ≤ π/4) [76] characterizes the polarization state

of the incident light. The case χ = 0 [χ = ±π/4] corresponds to linearly [circularly]

polarized light while intermediate values refer to elliptical polarization. Since the sign

of χ determines the handedness of the polarization and hence the sense of rotation

of the director around the z-axis, it is sufficient to consider only positive values of χ

related to the major b and minor a axis of the ellipse as:

tanχ =
b

a
. (A.18)
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The following relations can be shown from Eqs. (A.6, A.14):

|Ex|2 = cos2 Φ|Ae|2 − sin 2ΦRe
[
AeA

?
oe

iα(z)
]
+ sin2 Φ|Ao|2, (A.19)

|Ey|2 = cos2 Φ|Ao|2 + sin 2ΦRe
[
AeA

?
oe

iα(z)
]
+ sin2 Φ|Ae|2

ExE
?
y + E?

xEy = sin 2Φ(|Ae|2 − |Ao|2) + 2 cos 2ΦRe
[
AeA

?
oe

−iα(z)
]
.





Appendix B

Director equations in (θ, ϕ)

representation

We substitute the director from (5.1) into Eqs. (1.6,1.7) to derive a set of two PDEs

for θ, ϕ. The equation derived from Eq. (1.6) contains the time derivative on θ only:

γ1∂tθ =
(K1 −K3)

2
sin 2θ cos2 ϕ(∂zθ)

2 + sin 2ϕ(K2 −K1 + (K1 −K3) cos2 θ)∂zϕ∂zθ −

sin 2θ

2
[(K2 −K1 + 2(K2 −K3) cos2 θ) cos2 ϕ−K2](∂zϕ)2 −

[(K2 −K1 + (K1 −K3) cos2 θ) cos2 ϕ−K2]∂
2
zθ +

K1 −K2

4
sin 2θ sin 2ϕ∂2

zϕ (B.1)

+
ξeff

16π

{
sin 2θ[ExE

?
x − EzE

?
z − sin 2ϕ

2
(E?

yEz + EyE
?
z )]+

cos 2θ[sinϕ(E?
xEy + ExE

?
y) + (E?

xEz + ExE
?
z ) cosϕ] − sin 2θ sin2 ϕ(EyE

?
y − EzE

?
z )

}
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Multiplying Eq. (1.6) by sin θ sinϕ and Eq. (1.7) by cos θ and adding them the PDE

for ϕ can be derived:

γ1 cos2 θ∂tϕ =
sin 2ϕ

2
cos2 θ[(K1 +K3 − 2K2)(∂zθ)

2 + (K1 −K2 + (K2 −K3) cos2 θ)(∂zϕ)2] +

sin 2θ[(K1 −K2 + 2(K2 −K3) cos2 θ) cos2 ϕ−K1]∂zϕ∂zθ + (K1 −K2)
sin 2ϕ

4
sin 2θ∂2

zθ −

cos2 θ[(K1 −K2 + (K2 −K3) cos2 θ) cos2 ϕ−K1]∂
2
zϕ (B.2)

+
ξeff

16π

{
sin 2θ

2
[cosϕ(E?

xEy + ExE
?
y) − sinϕ(E?

xEz + ExE
?
z )] + cos2 θ[cos 2ϕ(E?

yEz + EyE
?
z )+

sin 2ϕ(EyE
?
y − EzE

?
z )]

}



Appendix C

Matrix elements Λij for the linear

stability analysis of the basic state

We can split the matrix elements Λij introduced in Eqs. (5.19) into two parts

Λij = Λpure
ij + Λabs

ij , i, j = 1, 2,

where Λpure
ij do not depend on absorption and thus describe the case of a pure LC

without dye dopping and Λabs
ij that is due to absorption effect only. Introducing β =

kImL [see Eq. (5.4)] and keeping in Λabs
ij the linear terms in γa, γ⊥ only the following

relations can be proved:

Λpure
11 = −1 +

ρ

1 − κ2

[
1 − 2κ sin πκ

π(1 − κ2)

]
, Λpure

12 = − 4ρκ sin πκ

π(4 − κ2)(1 − κ2)

Λpure
22 = −4 +

4ρ

4 − κ2

[
1 +

2κ sin πκ

π(4 − κ2)

]
, Λpure

21 = −Λpure
12

Λabs
11 =

ρ

π2(1 − κ2)3

{
2π(1 − κ2)(2β + πξκ)κ sinπκ+ 2κ(1 + cos πκ)× (C.1)

[πψ(1 − κ2) − 4κ(β + πξκ)] − π2β(1 − κ2)2
}

Λabs
22 = − 4ρ

π2(4 − κ2)3

{
2π(4 − κ2)(2β + πξκ)κ sin πκ− 2κ(1 − cos πκ)×

[πψ(4 − κ2) − 4κ(β + πξκ)] + π2β(4 − κ2)2
}
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Λabs
12 =

4ρκ(2β + πξκ) sin πκ

π(4 − κ2)(1 − κ2)
+

4ρ

9π2(4 − κ2)2(1 − κ2)2

{
9κ[π(ψ + 4ξ)κ4 + 4κ3β

−5π(ψ + 2ξ)κ2 − 16κβ + 4πψ] cos πκ− 6π(ψ + 2ξ)κ7 − 32βκ6+

(C.2)

15π(3ψ + 4ξ)κ5 + 228βκ4 − 3π(33ψ + 34ξ)κ3 − 432βκ2 + 60πψκ+ 128β
}

Λabs
21 = −Λabs

12 − 16βρ(27κ2 cos πκ + 10κ6 − 84κ4 + 165κ2 − 64)

9π2(4 − κ2)2(1 − κ2)2
.

To derive an approximate value for the Takens-Bogdanov point where det(Λ) = Tr(Λ) =

0 we may perform an expansion of Λij with respect to κ using the fact that κ4 << 1.

Eventually one finds for the Takens-Bogdanov point (κTB, ρTB):

[
13

8
π2 + 5β

(
116

9
− 11π2

8

)]
κ4

TB − 545

9
πψκ3

TB + [19π2 − β(25π2 − 160)]κ2
TB −

40πψκTB − 6π2 = 0, (C.3)

ρTB =
20

8 − κ2
TB

[
1 − 16ψκTB

π(8 − κ2
TB)

− (κ2
TB(7π2 − 64) − 8π2)β

π2(8 − κ2
TB)

]
.



Appendix D

Matrix representation for the light

propagation (Oldano formalism)

We can split D (see (1.19)) describing the light propagation in the medium into two

parts: D = D0 +Dz(z). D0 does not depend on z and refers to the basic state (without

reorientation) and Dz contains the rest. The matrices D0,Dz(z) are given by [using the

expression (1.11) for the dielectric tensor]:

D0 =




0 1 − s2
0

e⊥ + ea
0 0

e⊥ 0 0 0

0 0 0 1

0 0 e⊥ − s2
0 0




(D.1)

and

Dz =
1

e⊥ + ean2
z




−eanxnzs0 −ea(1 − n2
z)s

2
0

ea + e⊥
−eanynzs0 0

eae⊥n
2
x −eanxnzs0 eae⊥nxny 0

0 0 0 0

eae⊥nxny −eanynzs0 eae⊥n
2
y 0




, (D.2)

where ea = εa + iγa and e⊥ = ε⊥ + iγ⊥.

101



102 Matrix representation for the light propagation (Oldano formalism)

Note that Dz vanishes if n = (0, 0, 1). We have the following relations between the

matrix elements: (Dz)11 = (Dz)22, (Dz)23 = (Dz)41 and (Dz)13 = (Dz)42.

We may substitute the representation of the director (5.1) to get an expression for Dz

in terms of the angles.

It is convenient to introduce a representation in terms of eigenfunctions of D0. The

eigenvalue problem

D0ᾱi = aiᾱi (D.3)

is solved by the eigenvalues

a2 = −a1 =
√
e⊥ − s2

0,

a4 = −a3 =

√
(e⊥ + ea − s2

0)e⊥
e⊥ + ea

(D.4)

and eigenvectors

ᾱ1,2 =




0

0

∓ 1

a2

1




, ᾱ3,4 =




∓ a4

e⊥

1

0

0




. (D.5)

We introduce the metric tensor

M =




0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0




(D.6)

to define a scalar product between these vectors. With such a scalar product the

eigenvectors are orthogonal to one another:

ᾱT
i Mᾱj = δijNi, (D.7)

where Ni is the ”norm”of vector ᾱi. One has:

N1,2 = ∓ 2√
e⊥ − s2

0

, N3,4 = ∓ 2

√
e⊥ + ea − s2

0

e⊥(e⊥ + ea)
, (D.8)
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The matrix D0 is expressed by means of the vectors ᾱi as:

D0 =
∑

i

ai

Ni
ᾱiᾱ

T
i M. (D.9)

The four vectors ᾱi give the polarization of four ”proper”waves that propagate inside

the layer without changing their state of polarization in the case of homeotropic align-

ment. The eigenvalues of ai give the indices of refraction of these waves. Two of these

vectors ᾱ1 (ᾱ2) correspond to backward (forward) propagating ordinary waves and the

other two ᾱ3 (ᾱ4) correspond to backward (forward) propagating extraordinary waves.

The contribution of the backward waves (ᾱ1 and ᾱ3) is negligibly small because the

dielectric properties of the nematic change slowly on the spatial scale of the wavelength.

Thus we may expand Ψ̄(z) as follows:

Ψ̄(z) = b2(z)e
ik0a2zᾱ2 + b4(z)e

ik0a4zᾱ4 . (D.10)

Substituting (D.10) into Eq. (1.17) and multiplying the right and left hand sides by

MᾱT
k [taking into account the normalization condition (D.7)] the following equations

for b2 and b4 can be derived:

dbk
dz

=
ik0

Nk

∑

j=2,4

Pkj(z)bje
−ik0(ak−aj)z, k = 2, 4 , (D.11)

where the matrix elements of Dz with respect to the eigenvectors ᾱ2 and ᾱ4

Pkj(z) = ᾱT
k MDz(z)ᾱj (D.12)

are given by:

P24 = P42 =
eany(a4nx − s0nz)

a2(e⊥ + ean2
z)

, P22 =
eae⊥n

2
y

a2
2(e⊥ + ean2

z)
, (D.13)

P44 =
eanxa4(a4nx − 2s0nz)

e⊥(e⊥ + ean2
z)

− eas
2
0(1 − n2

z)

(ea + e⊥)(e⊥ + ean2
z)
.

From the definition of Ψ̄(z), Eq. (1.18), together with (D.10) and (1.16) the following

relations can then be easily shown:

Ex =
b4(z)a4

e⊥
eik0a4z, Ey =

b2(z)

a2
eik0a2z ,

Ez = − 1

εzz

([
s0e⊥
a4

+ εxz

]
Ex + εyzEy

)
. (D.14)
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