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Abstract. We study theoretically the dynamical reorientation phenomena when a long-pitch cholesteric
liquid-crystal film with homeotropic alignment is illuminated by a circularly polarized lightwave. In the
present case, the natural cholesteric pitch is of the order of (or larger than) the film thickness. The helical
cholesteric structure is thus frustrated by the boundary conditions without illumination. However, above a
light intensity threshold reorientation occurs and the bifurcation scenario depends strongly on the natural
cholesteric pitch. Recalling that a long-pitch cholesteric is achieved in practice by adding a small amount
of chiral agents in a nematic liquid crystal, the observed dynamics can be viewed as the result of the
competition between intrinsic and extrinsic unidimensional helical patterns. The intrinsic part consists of
the helical deformations induced by the chirality of the dopant, whereas the extrinsic part is related to
the chirality induced by the optical field through the non-uniform angular momentum transfer of light to
a nematic. The all-optical analog in the case of a pure nematic (without chiral dopant), is also discussed.

PACS. 42.70.Df Liquid crystals – 42.65.Sf Dynamics of nonlinear optical systems; optical instabilities,
optical chaos and complexity, and optical spatio-temporal dynamics

1 Introduction

By doping a nematic liquid crystal with chiral molecules
a cholesteric phase is induced which supports a unidimen-
sional helical structure of the director profile [1]. This he-
lical structure is characterized by a pitch P or the wave
vector q = 2π/P that can be of both signs distinguish-
ing between right- and left-handed helices. These mixtures
have been widely used in the realization of twisted cells
for liquid-crystal displays that are usually made in planar
alignment. For this reason, only a few studies were devoted
to the case of homeotropic alignment which is neverthe-
less interesting because of the incompatibility between a
bulk homeotropic alignment and the helix formation. In
fact, the bulk homeotropic orientation is stable for small
enough values of | q | while it is unstable above a threshold
value, q = q∗, where a helix structure appears. In spatially
extended systems this leads to the formation of twisted
domains which can be eventually quenched by applying a
suitable electric field [2,3].

In [4–6] the reorientation of the director induced by
polarized light impinging at normal incidence onto a long-
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pitch cholesteric (| q | < q∗) sample with homeotropic
anchoring conditions has been studied. There, the liq-
uid crystal was a mixture of a nematic liquid crystal
with a small quantity of a cholesteric one. It was shown
that the initial homeotropic alignment is unstable above a
light intensity threshold value, I = Ith, where the optical
Fréedericksz transition (OFT) takes place as in the pure
nematic case (q = 0). The observed dependence of Ith

as a function of q has confirmed the prediction that the
OFT threshold value is decreased in comparison to the
case q = 0 and that such a decrease is insensitive to the
sign of q, as expected. Moreover, the nature of the OFT
was found experimentally to differ qualitatively from the
case of a pure nematic.

In the case of linear polarized light, the OFT turns out
to be continuous as in the case of a pure nematic. How-
ever, contrary to the pure case, a discontinuous transition
to a largely reoriented state, which is accompanied with a
large hysteresis, was observed at some higher intensities [4,
5]. This effect was also observed when the incident light
is circularly polarized [6], however, the reorientation was
demonstrated to depend significantly on the relative he-
licity of the light field and the chiral mixture. Denoting by
σ+ [σ−] the case of a circular polarization with same [op-
posite] helicity to the one of the material, one can state for
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instance the two following points: i) a large optical bista-
bility is observed for the σ+ situation when |q| is large
enough; ii) the reorientation for σ− is similar to the one
of linear polarized light with q = 0 [6]. Whereas the de-
pendence of the threshold for OFT versus chiral dopant
concentration and the optical phase locking (OPL, which
refers to the fact that the optically induced birefringence
remains about π [5] over a relatively wide range of inten-
sities above the OFT) were correctly described, the model
presented failed to reproduce the other observations [6].

In the present paper, we consider the detailed theo-
retical study of the optical reorientation induced by cir-
cularly polarized light in long-pitch cholesterics, i.e. chi-
rally doped nematics. The competition between an intrin-
sic (owing to the chiral dopant) and an extrinsic (owing
to the light [7]) helical pattern is shown to be at the origin
of a complex behavior. The qualitatively different bifur-
cation scenarios that have been previously observed for
right- and left-handed circular polarizations are fully de-
scribed. In addition, different kinds of bifurcation scenar-
ios are quantitatively predicted depending on the actual
value of q, when the light intensity is regarded as a con-
trol parameter. Moreover, some dynamical regimes that
have not been reported yet are predicted and a possible
experimental observation of such regimes is proposed.

We first present a stationary model that describes the
OFT assuming a time-independent spatial configuration
of the reoriented liquid crystal, which allows for the uni-
form precession of the director [8]. The nature of the OFT
is shown to be discontinuous or continuous and optical
bistability can occur in its neighborhood depending on
the actual twisting power of the sample. Such predictions
are further confirmed by a dynamical model that, in
addition, allows us to describe more complex behaviors
such as the nutation-precession motion of the director [9].
All the observations that have been reported so far both
for the σ+ and σ− cases are quantitatively described.
For instance, the nature of the bifurcation to a large
reoriented state, the intermediate dynamical regimes and
instabilities experienced by the system are demonstrated
to depend strongly on q. Finally, we compare the situation
with its all-optical analog (without chiral dopant) in
the case of a pure nematic, where the excitation optical
field is obtained from the superposition of two incoherent
circularly polarized beams carrying identical or opposite
angular momentum.

The description of the optically induced reorien-
tation involves the dynamics of the director n =
(sinΘ cosΦ, sinΘ sinΦ, cosΘ) that designates the local
optical axis orientation in a Cartesian coordinate system
(x, y, z) with the z-axis along the direction of the wave
vector of light and (Θ,Φ) being the usual spherical an-
gles. The treatment is developed in the infinite plane-wave
approximation, justified experimentally if the spot size of
the excitation beam is significantly larger than the thick-
ness L of the film. Under this assumption, all the rele-
vant functions depend solely on the spatial coordinate z
and the time t. The theory presented here consists of the
straightforward extension of the known theory developed

for the pure nematic, to which we will refer from now on
by the superscript “N”. To generalize to a chiral nematic
case one has to add a chiral part to the elastic free energy
density

Fel = F
(N)
el + qK2(n ·∇× n) . (1)

Then, the intrinsic helical structure induced by the chiral
dopant is taken into account by writing the twist angle Φ
as

Φ(z, t) = Φ(N)(z, t) + k2qz , (2)

where k2 = K2/K3 and Ki are the Franck elastic con-
stants. The strong homeotropic anchoring conditions are
written Θ(0, t) = Θ(L, t) = 0 and ∂zΦ(0, t) = ∂zΦ(L, t) =
k2q (note that ∂zΦ

(N)(0, t) = ∂zΦ
(N)(L, t) = 0, see for

instance [10]).
In the calculations, we took the material parameters

for the nematic E7, as in the experiments [4–6]: K1 =
11.09 × 10−12 N, K2 = 5.82 × 10−12 N, K3 = 15.97 ×
10−12 N [11], ne = 1.746, no = 1.522 [12] (extraordinary
and ordinary refractive indices), γ1/K3 = 1010 s m−2 [13],
where γ1 is the rotational viscosity. Following the exper-
imental conditions [6] the thickness of the liquid-crystal
film and the wavelength of the laser are taken to be
L = 50 µm and λ = 514.5 nm, respectively. We also in-
troduced the characteristic relaxation time of the director
τNLC = γ1L

2/π2K3. In what follows, without loss of gen-
erality, the incident light is chosen to be a left-handed cir-
cularly polarized helix propagating towards z > 0. Thus,
q > 0 corresponds to the σ− case and q < 0 to the σ+ one.

2 Theoretical model

The dynamical equations of motion for the angles Θ and
Φ are obtained from the balance of torques (elastic, elec-
tromagnetic and viscous) acting on the nematic. In the
absence of a velocity field they can be written as

∂Θ

∂τ
= L

(N)
Θ + L∗Θ(q) , (3)

∂Φ

∂τ
= L

(N)
Φ + L∗Φ(q) , (4)

where time τ is normalized to τNLC. The expressions of

the torques L
(N)
Θ and L

(N)
Φ for pure nematic can be found

in [9]. The torques L∗Θ and L∗Φ are obtained by calculating
the corresponding variational derivatives of the chiral part
of the elastic free energy (see Eq. (1))

L∗Θ = q̃ k2 sin 2Θ

{
q̃ k2

[
1/2 + (1− k2) sin

2 Θ
]

+2(1− k2) sin
2Θ

(
1

π

∂Φ(N)

∂ξ

)}
, (5)

L∗Φ = −2q̃k2(1− k2) sin 2Θ

(
1

π

∂Θ

∂ξ

)
, (6)

where the length is normalized according to ξ = z/L and
q̃ = qL/π is the normalized chiral parameter.
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Following the methods presented in [9] for the pure
nematic case, we expand Θ and Φ(N) with respect to ξ in
systems of orthogonal functions which satisfy the bound-
ary conditions, namely

Θ(ξ, τ) =
∞∑

n=1

Θn(τ) sin(nπξ) , (7)

Φ(N)(ξ, τ) = Φ0(τ) +
∞∑

n=1

Φn(τ)
sin[(n+ 1)πξ]

sin(πξ)
. (8)

In equation (8) the zeroth mode Φ0(τ) does not depend on
ξ and describes a rigid rotation of the director (without
elastic distortion) around the z-axis.

After substituting these expansions into equa-
tions (3, 4) with further projection of equation (3) onto the
modes Θn and equation (4) onto Φn (Galerkin method), a
set of coupled nonlinear ODEs for the modes Θn and Φn

is obtained

dΘn

dτ
= 2

∫ 1

0

[
L

(N)
Θ + L∗Θ

]
sin(nπξ)dξ , (9)

dΦn

dτ
= 2

∫ 1

0

[
L

(N)
Φ + L∗Φ

]
sin[(n+ 1)πξ] sin(πξ)dξ. (10)

The infinite set of ODEs given by equations (9, 10) was
truncated and solved by the Runge-Kutta method to-
gether with the equations that govern the propagation of
light inside the nematic (see [9] for details). One retains
a sufficient number of modes to ensure convergence of the
results within a given tolerance. It should be noted that
since the chirality does not break the rotational symme-
try, the ODE for Φ0(τ) is decoupled from the rest as in
the case of a pure nematic.

When Θn and Φn≥1 do not depend on time [dΘn/dτ =
Φn≥1/dτ = 0], the director precesses uniformly around
the z-axis with a constant normalized angular velocity Ω
defined as Ω = dΦ0/dτ . In this case, the problem is sig-
nificantly simplified. In fact, instead of solving a system
of evolution equations for Φn(τ) and Θn(τ), we are now
faced with a set of nonlinear algebraic equations. After
solving them by a Newton-Raphson method and substi-
tuting Φn and Θn into the equation for Φ0, the angular
velocity Ω of the uniform precession can be found. We call
such a state a uniform precession (UP) state. Moreover,
the linear stability analysis of a UP state can be performed
by calculating the eigenvalues of the Jacobian matrix of
equations (9, 10).

The other possible situation is when Θn and Φn≥1 do
depend on τ and thus dΦ0/dτ 6= const. Such a state corre-
sponds to a non-uniform precession (NUP) of the director.

3 Approximate solution for the uniform
precession states

The straightforward generalization of the approximate
model developed in [10] for the UP states prompts us to

write the angles Θ and Φ as

Θ = Θ1 sin(πξ) , (11)

Φ = Ωτ + α(ξ) + k2q̃ πξ , (12)

where Θ1 is the amplitude of the polar angle Θ to low-
est order (see Eq. (7)). The expression for the constant
precession rate Ω and the twist reorientation profile α(ξ)
are identical to those for the pure nematic case (see
Eqs. (65, 66) of [10]; note that there α is denoted by ϕ),
which were obtained assuming smallness of both the polar
angle (Θ2 ¿ 1) and the twist distortion (| ∂α/∂ξ| < 1).
We introduce the phase delay between the extraordinary

and the ordinary wave ∆ = (2π/λ)
∫ 1

0
[ne(ξ)− no] dξ,

where ne(ξ) = neno/(n
2
e cos

2 Θ + n2
o sin

2 Θ)1/2, which de-
pends on Θ only and is a global measure of the ampli-
tude of reorientation. Within the given approximation, ∆

is related to the reorientation amplitude Θ1 as ∆ = L̃Θ2
1.

Here L̃ = Lπno(n
2
e−n2

o)/(2n
2
eλ) is a normalized cell thick-

ness. The condition Θ2 ¿ 1 thus implies ∆ ¿ L̃, where

L̃ = 55.8 in the present situation. Using the additional
assumption that | k2q̃ | < 1, the following approximate
transcendental equation for the phase delay ∆ can been
derived

∆
[
a(∆)ρ2 − b(∆, q̃ )ρ+ c(∆, q̃ )

]
= 0 , (13)

where

a(∆) =
π2

2

∫ 1

0

{
Ψ2(ξ) sin2(πξ)

−2[1− u(ξ)]Ψ(ξ) sin[∆u(ξ)]

}
dξ , (14)

b(∆, q̃ ) = 1−
µ

L̃
∆+ 2πq̃ k2

∫ 1

0

[1− u(ξ)] sin[∆u(ξ)] dξ ,

(15)

c(∆, q̃) = 1− q̃ 2k2
2 −

1− k1

2L̃
∆ , (16)

and

Ψ(ξ) =
1

∆ sin2(πξ)
[(1− cos∆)u(ξ) + cos[∆u(ξ)]− 1] ,

(17)

with u(ξ) = ξ − sin(2πξ)/(2π). Here ρ = I/I
(N)
th is the

normalized light intensity and I
(N)
th is the OFT threshold

intensity for q̃ = 0. In equation (15) µ = (9ε⊥−5ε‖)/(8ε‖),

where ε⊥ = n2
o (ε‖ = n2

e) is the dielectric permittivity,
at optical frequency, perpendicular (parallel) to n. It will
turn out that even if the condition Θ2 ¿ 1 is not satisfied
(i.e. when ∆ ∼ L̃, which corresponds to the case of large
reorientation of the director) the approximate model still
captures the main features of the UP solution.

It can be shown from the linearized equations (13–17)
that the director is unperturbed until the intensity reaches
the threshold value

ρth(q̃ ) = 1− q̃ 2k2
2 , (18)
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Fig. 1. ∆/2π versus ρ in the neighborhood of the optical
Fréedericksz transition calculated from the approximate model
for q̃ = −0.7 (a), q̃ = −0.5 (b), q̃ = −0.3 (c) and q̃ = 0.1 (d).
The solid (dashed) lines are stable (unstable) states.

Note that for q̃ > q̃ ∗ = 1/k2 ' 2.74 the homeotropic
alignment n = (0, 0, 1) is destabilized in favor of a twisted
structure already without light [14]. The lowering of the
OFT in the presence of a chiral dopant agrees with pre-
vious work where a linearized theory was used [6] but,
in addition, the present approximate model captures the
stationary nonlinear behavior above the OFT. Thus, from
equation (13) one finds that the OFT can be continuous
(when q̃ < q̃c) or discontinuous (when q̃ > q̃c) with the
critical value

q̃c =
6π(2µ− 1 + k1)

k2L̃(4π2 − 15)
. (19)

In the present case we found that q̃c ' 5.8 × 10−3. In
Figure 1 panels (a-c) correspond to q̃ < q̃c and panel (d)
corresponds to q̃ > q̃c. When the transition is continu-
ous (q̃ < q̃c) a subsequent discontinuous transition with
hysteresis takes place for q̃h < q̃ < q̃c as illustrated by
Figures 1(b, c). The value q̃h, above which optical bistabil-
ity occurs, is determined by the conditions ∂∆ρ|∆=∆h

= 0
and ∂2

∆ρ|∆=∆h
= 0, where ∆ = ∆h is the phase delay that

corresponds to the birth of the hysteresis loop. Such con-
ditions can be rewritten as (neglecting the terms propor-

tional to 1/L̃ with respect to the terms of the order of 1)

∂∆a (∆h) ∂
2
∆b (∆h, q̃h) = ∂2

∆a (∆h) ∂∆b (∆h, q̃h) , (20)

that gives q̃h ' −0.63 and ∆h ' 1.29. Moreover, in the
hysteretic region, reoriented states can exist for ρ < ρth if
q̃ > −0.40 as illustrated by Figure 1(c). Another feature
of the model is the OPL around ∆ ' π which is clearly
observed for q̃ ≤ 0, as illustrated by Figure 2(a–c) where
the reorientation diagram is plotted over a larger range
of intensities for different values of q̃.

In summary, the stationary approximate model de-
scribes the main features both in σ+ and σ− geometries
at small reorientation amplitude. However, the discontin-
uous transition to a largely reoriented state in the σ+ case
is not predicted although this state is correctly described

Fig. 2. ∆/2π versus ρ (approximate model) for q̃ = −0.7 (a),
q̃ = −0.35 (b), q̃ = 0 (c), q̃ = 0.35 (d) and q̃ = 0.7 (e). The
solid (dashed) lines are stable (unstable) states.

(not visible on the scale of Fig. 2). In fact, a rigorous treat-
ment is required to describe properly the director dynam-
ics. Results of numerical simulations are presented in the
next section.

4 Numerical simulations

We simulated the director dynamics from the set of equa-
tions governing the behavior of the system as explained at
the end of Section 2 and found various bifurcation scenar-
ios depending on q̃. The result is shown in Figure 3 where
solid (dashed) lines correspond to stable (unstable) UP
states and the gray regions correspond to NUP states. As
was already mentioned, the UP state (NUP state) is char-
acterized by a time-independent (time-dependent) ampli-
tude of the spatial reorientation modes and precession an-
gular velocity (see Eqs. (7, 8)). The phase delay ∆ thus
depends on time only for NUP state via Θ(ξ, τ) so that
the gray region in Figure 3 represents the range of values
explored by ∆(τ). It turns out that NUP states exist only
in a finite window of the chiral parameter q̃1 < q̃ < q̃2,
where q̃1 ' −1.17 and q̃2 ' 0.53. The bifurcation scenar-
ios outside and inside this window are discussed separately
in what follows. We refer the reader to [9,15] for a de-
tailed description of the different regimes and transitions
between them for the pure case q̃ = 0.

4.1 Large chiral doping (q̃ < q̃1 or q̃ > q̃2)

The typical scenarios for q̃ < q̃1 and q̃ > q̃2 are shown in
Figures 3(a, d), respectively. As one sees from Figure 3(a),
where q̃ = −1.235, OPL takes place approximately for
1.25 < ρ < 2.0. On the contrary, for q̃ > q̃2, OPL does
not occur as illustrated by Figure 3(d) where q̃ = 0.7.
If one starts from the UP state above the OFT and the
intensity ρ is increased, a discontinuous transition to a
largely reoriented state with hysteresis takes place in both
cases, but for q̃ < q̃1 the hysteretic loop is much wider.
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Fig. 3. ∆/2π versus ρ (simulations) in semi-logarithmic scale
for q̃ = −1.235 (a), q̃ = −0.9 (b), q̃ = 0 (c) and q̃ = 0.7 (d).
The solid (dashed) lines are stable (unstable) states and the
gray regions refer to precession-nutation regimes.

In fact, these results describe qualitatively the observa-
tions reported in [6] both for the σ+ and σ− geometries.
More precisely, the comparison between experiment and
theory is shown in Figure 4 where the simulations are per-
formed for the values q̃ = ±1.235 that correspond to the
experimental conditions reported in [6]. Only qualitative
satisfactory agreement is found between theory and ex-
periment. Indeed, the thresholds are quite different. The
reason for that could be, for instance, the use of a finite
beam size in the experiment whereas in the theory the in-
finite plane-wave approximation has been assumed. In ad-
dition, we notice that the NUP states were not observed
in [6], as expected, since the experimental values of q̃ are
outside the interval [q̃1, q̃2].

An interpretation of the characteristic features pre-
sented above can be done by considering the competition
between the intrinsic helical pattern induced by the chiral
dopant with the one generated by the light due to the non-
uniform angular-momentum transfer to the medium [7].
In Figure 5 the intensity dependence of the phase delay ∆
and other properties are depicted for q̃ = −0.7, 0 and 0.7.
From panels (a) we see that OPL exists only for q̃ = −0.7
and 0 in contrast to the case q̃ = 0.7. However, the light-
induced modifications of the overall twist distortion pro-
file is qualitatively the same in all cases. Indeed, the light-
induced part of Φ|ξ=1−Φ|ξ=0 becomes more negative when
increasing the intensity as shown by panels (b) of Figure 5
where the dashed lines are the intrinsic contributions to
the total twist profile, namely k2q̃ πξ. Consequently, the
light angular-momentum deposition tends to compensate
the intrinsic torsion arising from the chiral dopant when
q̃ > 0. This can eventually lead to unwinding of the intrin-
sic helical structure. The unwinding condition can be writ-
ten as qtot = 2π/Ptot = 0, where Ptot = Pintrinsic + Plight

with Pintrinsic = 2L/(k2q̃) (see Eq. (2) taking Φ(N) ≡ 0)
and Plight = 2πL/

(
Φ(N)|ξ=1 − Φ(N)|ξ=0

)
. Such an un-

winding effect is illustrated in panel (b3) of Figure 5. How-

Fig. 4. Comparison between experiment and theory with q̃ =
−1.235 [σ+ geometry] (a) and q̃ = 1.235 [σ− geometry] (b). The
insets are experimental figures taken from [6] where • refers to
increasing intensity and ◦ refers to decreasing intensity. The
simulations are performed for the same parameters. The solid
(dashed) lines are stable (unstable) states.

ever, it is important to note that the underlying physical
mechanism responsible for the existence of OPL is not
the presence or absence of the unwinding process. This is
demonstrated in Figure 6 where the normalized wave vec-
tor q̃tot = qtotL/π is plotted as a function of the intensity
for different values of q̃, i.e. the chiral dopant concentra-
tion (the curves correspond to UP states for small reori-
entation). From this figure, one can see that two kinds
of qualitative behavior are represented by the families of
curves (a–c) and (d–i), respectively. In fact, these families
are defined by the condition q̃ < q̃2 and q̃ > q̃2, respec-
tively, as depicted in the inset of Figure 6, which shows
the reorientation diagram for values of q̃ slightly below
(q̃ = 0.5 for the curve (c)) and above (q̃ = 0.55 for the
curve (d)) q̃2 = 0.53. Obviously q̃ = q̃2 can thus be viewed
as a threshold-like value for the appearance of OPL. In
fact, we would like to mention that the energy exchange
between the ordinary (o) and the extraordinary (e) waves
due to the non-adiabatic light propagation through the
twisted optically anisotropic liquid crystal can be taken as
an interesting indicator for the presence of OPL. For con-
venience, we introduce the normalized intensities of the o-
and e-waves averaged along the z-axis in the liquid-crystal

film, which are defined as 〈|Ao/e|
2〉 =

∫ 1

0
|Ao/e(ξ)|

2dξ.
Here Ao/e are the normalized amplitudes for the o/e-
waves inside the sample. In the absence of reorientation,
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Fig. 5. ∆/2π versus ρ/ρth (first row), twist reorientation profile Φ(ξ)−Φ(0) versus ξ (second row) and the normalized intensities
of the e- and o-waves averaged along the z-axis inside the liquid-crystal film, 〈|Ae/o|

2〉, versus ρ/ρth (third row) for different
values of q̃. Left column: q̃ = −0.7; Center column q̃ = 0; Right column q̃ = 0.7. The dashed lines in panels (b1, b2, b3)
correspond to the intrinsic contribution to the twist reorientation profile which is given by k2q̃ πξ.

where the light remains circularly polarized during its
propagation, we have 〈|Ao|

2〉 = 〈|Ae|
2〉 = 1/2. In Fig-

ures 5(c1, c2, c3) the quantities 〈|Ao/e|
2〉 as a function of

the incident intensity are shown. As one can see from Fig-
ures 5(c1, c2) the situations with OPL are characterized
by 〈|Ae|

2〉 < 〈|Ao|
2〉. On the contrary, 〈|Ae|

2〉 > 〈|Ao|
2〉

in the absence of OPL (see Fig. 5(c3)). In other words,
the twisted deformations are responsible for a self-optical
limitation (amplification) of the e-wave’s intensity in the
presence (absence) of OPL. Finally, one should keep in
mind that OPL is actually linked to twist reorientation
which plays a role both in the elastic and optical contri-
butions of the total torque exerted onto the director (see
the appendix of [9] for the expression of these torques).

The competition between intrinsic/extrinsic helical
patterns is also useful for understanding the observations
in the case when the exciting light field is obtained from
the superposition of two incoherent circularly polarized
beams incident from opposite sides and carrying identical
or opposite angular momentum in a pure nematic film [16].
In that case, the chirality of the helical patterns induced
by each exciting beam separately have same sign (i.e. op-

Fig. 6. q̃tot versus ρ (simulations) for q̃ = −0.7 (a), q̃ = 0 (b),
q̃ = 0.5 (c), q̃ = 0.55 (d), q̃ = 0.6 (e), q̃ = 0.7 (f), q̃ = 0.8 (g),
q̃ = 1 (h) and q̃ = 1.235 (i). Inset: ∆/2π versus ρ (simulations)
for q̃ = 0.5 (c) and q̃ = 0.55 (d). The solid (dashed) lines are
stable (unstable) states and the gray region refer to precession-
nutation regimes.
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Fig. 7. All-optical analog with the situation when q̃ < q̃1 (a)
and q̃ > q̃2 (b). Panel (a) [(b)] corresponds to the σ− [σ+]
geometry.

posite angular momentum) or opposite sign (i.e. identical
angular momentum). Such a situation is presented in Fig-
ures 7(a, b), which can be viewed as the all-optical analog
(there is no chiral dopant) of Figures 3(a, d), respectively.
As it is seen from Figure 7 the OFT threshold is ρth = 1
as in the pure nematic under a single circularly polarized
excitation (note that the total incident intensity is now
defined as the sum of the intensities of the two beams)
because the OFT is insensitive to the propagation direc-
tion (towards z > 0 or z < 0) and the handedness of a
polarized light beam.

4.2 Small chiral doping (q̃1 < q̃ < q̃2)

For q̃1 < q̃ < q̃2 there are one or even more intervals of
ρ where the NUP states exist. In fact, we found two dif-
ferent kinds of scenario when the intensity is smoothly in-
creased starting from the homeotropic state. The sequence
of regimes turns out to be UP1 → NUP → UP1 → UP2
for q̃1 < q̃ < −0.63 (see Fig. 3(b)), whereas it is UP1 →
NUP → UP2 for −0.63 < q̃ < q̃2 (see Fig. 3(c)). Here
UP1 and UP2 states refer, respectively, to UP states with
a small (∆ ∼ π) and large (∆/2π ∼ 10) reorientation of
the director. However, for −0.63 < q̃ < −0.25, the NUP
states exist also at some higher values of ρ. Such states
are thus not accessible by the commonly used experimen-
tal procedure which consists in a smooth increase of the
intensity starting from zero. In what follows we review all
possible scenarios starting from q̃ = q̃1.

Fig. 8. ∆/2π versus ρ (simulations) in semi-logarithmic scale
for different values of q̃. (a) q̃ = −1.15; (b) q̃ = −0.7; (c) q̃ =
−0.6; (d) q̃ = −0.5; (e) q̃ = −0.45; (f) q̃ = 0. The solid (dashed)
lines are stable (unstable) states and the gray regions refer to
precession-nutation regimes. Hf, H and SN refer, respectively,
to Hopf, homoclinic and saddle-node bifurcations.

Above q̃ = q̃1 the NUP states appear. They are lo-
cated in a finite range of intensity ρ− < ρ < ρ+ for q̃1 <
q̃ < −0.63 (Figs. 8(a, b)). The transitions UP → NUP
at ρ = ρ− and ρ = ρ+ are identified as supercritical
Hopf bifurcations (Hf). For such values of q̃ the amplitude
of the limit cycle associated with the nutation motion,
A = maxτ ∆(τ)−minτ ∆(τ), passes through a maximum
value for an intensity between ρ− and ρ+ (Figs. 8(a, b)).
Both, the range of intensity ρ+−ρ− and the maximum of
A increase when q̃ is increased from q̃1 until, at q̃ ' −0.63,
the nutation limit cycle (NUP) collides with the unsta-
ble UP branch located at ∆/2π ∼ 1, which is found to
be a saddle. As a result of such a collision a discontinu-
ous transition from the NUP to the UP2 state via a ho-
moclinic bifurcation occurs (H). On the other hand, for
q̃1 < q̃ < −0.63, the discontinuous transition to the UP2
state takes place directly from the UP1 via a saddle-node
bifurcation (SN) at ρ > ρ+ (see Figs. 8(a, b)).

For q̃ > −0.63 the NUP region is split into two in-
dependent regions, NUP (lower intensities) and NUP∗

(larger intensities), which are connected by an unstable
UP1 solution as shown in Figure 8(c). Starting from the
NUP (NUP∗) solution and increasing (lowering) the in-
tensity, the system eventually undergoes a discontinu-
ous transition to UP2 state via a homoclinic bifurcation.
The separation between NUP and NUP∗ regions increases
when q̃ is increased. Moreover the NUP∗ region shifts to
higher intensities and its interval of existence becomes
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smaller. At some critical q̃, the UP1 state at higher in-
tensities loses its stability at the saddle-node SN giving
rise to a second NUP∗ region. Then, as q̃ increases, such
region develops towards lower values of ρ as demonstrated
in Figure 8(d) and the unstable UP1 states exist over a
larger range of intensity (see the line HfB-SN in Fig. 8(d)).
These NUP∗ regions eventually merge into a single one,
but a stable UP1 island (see the line A-B in Fig. 8(e)) still
exists. At larger q̃, this island disappears and finally, at
q̃ = −0.25, the NUP∗ region shrinks to zero. For q̃ > −0.25
the situation becomes qualitatively similar to the case of a
pure nematic (Fig. 8(f)) until the value q̃ = q̃2 is reached,
where the NUP state completely disappears (Fig. 3(d)).

It is worth noting that the scenarios depicted in Fig-
ures 8(a, b) might be experimentally realized. One should
recall that they are qualitatively different from the ones
obtained in the pure nematic case as shown in Figure 8(f).
Indeed, in the former case (with intensity increasing) one
deals with a continuous NUP→ UP1 transition whereas in
the latter case there is a discontinuous NUP→ UP2 tran-
sition. However, the experimental demonstration of sce-
narios shown in Figures 8(c–e) may be difficult. Namely,
the NUP∗ regime (for −0.63 < q̃ < −0.25) cannot be
reached by slow increase of the light intensity. Indeed, the
first NUP regime is always followed by a discontinuous
transition via a homoclinic bifurcation to a UP2 state.
We have checked the possibility to reach either the NUP∗

states or the stable UP1 island by an abrupt increase of
the intensity starting from stable states lying at lower in-
tensities (i.e. homeotropic, UP1 or NUP states) but the
result was negative. A possible experimental realization
might be the following, starting with a value of q̃ that
corresponds to the scenario shown in Figure 8(b), just be-
fore the NUP region splits into two distinct regions (see
Fig. 8(c)). Then, one smoothly (to avoid transient fluctua-
tions that could initiate an abrupt, and irreversible, jump
to a UP2 state) increases the intensity starting from the
unperturbed state to approach the UP1 states occurring
after the NUP region (i.e. ρ ' ρ+). Finally, the tempera-
ture of the system should be changed in such a way that
the value of q̃ is increased. We speculate that using this
method one can reach the family of stable solutions at
higher intensities (see Figs. 8(c–e)). In that case, a further
exploring of the bifurcation diagram becomes possible by
smooth change of the intensity (at fixed temperature).

5 Conclusion

The optical reorientation induced by circularly polar-
ized light in homeotropically aligned long-pitch cholesteric
films, i.e. chirally doped nematic films, has been stud-
ied theoretically. The key parameter used in our study is
the (dimensionless) wave vector q̃ = qL/π that describes
the intrinsic helical structure, where q = 2π/P , P is the
cholesteric pitch and L is the cell thickness. As is known,
the bulk homeotropic orientation (without illumination)
is stable only below the threshold value | q̃ | = q̃ ∗ (typ-
ically q̃ ∗ ∼ 2–3), above which domains appear in spa-
tially extended systems. In our case, however, the chiral

dopant concentration is small (| q̃ | < q̃ ∗) and the initial
homeotropic orientation is destabilized by light above an
intensity threshold that is reduced in comparison with
the case without chiral dopant. We note that the cell
thicknesses used in optically induced reorientation exper-
iments (at visible wavelength) are typically of the order
of 100 µm, any experimental realization thus deals with
long-pitch cholesterics since | q̃ | < q̃ ∗ corresponds typi-
cally to P larger than L. We have evaluated quantitatively
the role of the cholesteric pitch on the light-induced reori-
entation dynamics. The experimental counterpart can be
done by adjusting the amount of chiral molecules added
to a nematic sample. We have shown that the bifurca-
tion scenario is significantly affected by the presence of
chiral agents which introduce internal twist deformation
in the medium and compared it with the pure nematic
case (q̃ = 0). This is an additional confirmation of the
essential role played by twist deformations in optically in-
duced reorientation dynamics of liquid crystals, which is
well known in the case of pure nematics. The main results
of the present study are summarized in what follows. The
optical Fréedericksz transition is found to be continuous
if q < q̃c and discontinuous in the opposite case. The crit-
ical value qc turns out to be small and for the present
situation it is q̃c ∼ 5.8 × 10−3. In addition, an optical
bistability is predicted in the vicinity of the supercriti-
cal optical Fréedericksz transition for small values of | q̃ |
which has not yet been confirmed by existing experimen-
tal observations. While an approximate model is able to
describe qualitatively the behavior of the system in the
neighborhood of the optical Fréedericksz transition, rigor-
ous simulations are necessary for a proper understanding
of all phenomena. Theoretical predictions shed light on
previous experiments and give a detailed picture of how
the reorientation processes are affected when the chiral
parameter is changed. In particular, the optical bistabil-
ity between a slightly and a largely reoriented precessing
state has been fully described and its all-optical analog
(without chiral dopant) has been discussed. It turns out
that the optical bistability extends over a large range of in-
tensities only when the helicity of the circularly polarized
light is the same as the one of the material and our findings
agree qualitatively with known experimental results. This
has led us to an interpretation in terms of a competition
between an intrinsic spatial helical pattern (due to the
chiral dopant) and an extrinsic one (due to the light) that
can have either the same or opposite chirality. We have
also found that the dynamical regime consisting of a non-
uniform precession of the director around the light prop-
agation axis, when q̃ = 0, is suppressed for large enough
values of | q̃ |, which is confirmed by available experimen-
tal data. The mechanism of disappearance has neverthe-
less been shown to depend on the sign of q̃. In particular,
a new family of uniformly and non-uniformly precessing
states at higher intensities, which do not exist in the pure
nematic case, has been found for q̃ < 0. The possible ex-
perimental observation of such states has been proposed.
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