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Abstract

Over the past decade various setups in cavity quantum electrodynamics have been studied in

terms of their potential for future technologies involving the storage and processing of quantum

information. Among different hybrid quantum systems, those based on spin ensembles coupled

to single-mode cavities have recently attracted much attention. Whereas it is nowadays possible

to reach the regime of strong collective coupling between a cavity and a spin ensemble, necessary

for the coherent transfer of quantum information, such hybrid quantum systems still suffer from

a significant degree of decoherence resulting from an inhomogeneous broadening inherent in the

ensemble. My research focuses on developing various theoretical approaches for understanding

the collective non-Markovian dynamics of such non-Hermitian many-body systems aiming at

their efficient control, as well as at the suppression of the decoherence induced by the ensemble

broadening. Another line of my research deals with the complex quantum dynamics arising when

two-level emitters are strongly coupled to a multimode cavity or photonic structures. All of

my research is strongly oriented towards future practical realizations in different hybrid quantum

systems.
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1 Introduction

Cavity quantum electrodynamic (cQED) is nowadays a rapily developing field whose technolog-

ical importance cannot be overestimated. The history of cQED can be traced back to a very

fundamental question on the interaction between an atom and an electromagnetic field, which

is, “How long does it take for an atom in free space to decay back to its ground state once it has

been excited by the field?” In 1930, this question was addressed by Weisskopf and Wigner [1],

who demonstrated that the atom will not stay in its excited state forever but rather decay due

to the interaction with the quantum electrodynamic (QED) vacuum. Moreover, the spectrum

emitted by the atom in such a spontaneous decay can be well approximated by a Lorentzian func-

tion centered at the atomic transition frequency which additionally exhibits a slight Lamb shift

[2]. Later it was realized that the QED vacuum can also be modified so that the local density

of photonic states (LDOS) becomes structured in contrast to the simple free-space case. In his

landmark paper in 1946, Purcell [3] was the first who discovered the dramatic enhancement of

spontaneous emission of magnetic moment transitions if small metallic particles are mixed with

a nuclear-magnetic medium. As was revealed in the early 1980s, spontaneous emission can not

only be enhanced if the atom is surrounded with a resonant cavity but it can also be inhibited

if the cavity has no modes at the transition frequency [4, 5]. Much of the earlier work focused

on the resonant coupling to a single cavity mode, while coupling to the rest of the cavity modes

was regarded as a parasitic influence and was either discarded or bulked into a total background

spontaneous emission rate. Recent trends in experimental work, however, point towards highly

complex and spatial open photonic structures, where the delineation between the cavity and the

radiative environment becomes highly blurred (see, e.g., [6–8]).

The year 1963 witnessed another very important discovery [9] when Jaynes and Cummings pro-

posed a fully quantized theory of a two-level atom coupled to a single cavity mode and showed

that the atom is periodically re-excited in what is known as Rabi oscillations - a coherent ex-

change of the excitation between the atom and the cavity field. Some years later the quantized

theory successfully explained the purely quantum phenomena such as a sequence of revivals and

collapses of the Rabi oscillations [10]. The first experimental realization of quantum Rabi oscilla-

tions was carried out by Haroche et al., by placing Rydberg atoms in a high Q cavity and strongly

coupling the atoms to it, thus establishing the experimental basis for a field that is now known

as cQED [11]. Since that time many new techniques have been put forward to overcome the

difficulties in trapping and manipulating atoms. A single rubidium atom strongly coupled to a

nanoscale photonic crystal cavity [12] or to a whispering-gallery-mode of a bottle microresonator

[13] are just a few recent examples.

One important aspect of strong coupling, which is reached when the coupling strength essentially
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exceeds the total decoherence rate in a system, is that it can be used for coherent information

transfer between the electromagnetic field and the atom, which is a very interesting aspect in

quantum information science. This technological interest triggered intensive material science

studies towards the search for “artificial atoms” with tunable transition frequencies and coupling

strengths over a wide range, as well as towards engineering of their environment to enhance the

emitter-cavity coupling. Such “artificial atoms” usually possess two states decoupled from all

other states, so that they effectively behave as two-level systems and can thus be referred to

as quantum bits (qubits), to which quantum information can be encoded. Specifically, a large

variety of solid-state qubits in complex photonic nanostructures, based e.g. on quantum dots or

nitrogen vacancy centers in diamond (operating at optical frequencies), have been studied very

intensively during the last decade (see [14] for a recent review). The most successful artificial

systems that have been realized in this context so far are superconducting qubits radiating in

the microwave region with controllable magnetic flux, electric charge or phase difference across

a nano-fabricated Josephson junction (see the review [15]).

However, the strong emitter-cavity coupling naturally implies strong interactions also with other

degrees of freedom leading to the detrimental influence of decoherence that limits the system’s

coherence times. Furthermore, there is not a single system available which would satisfy all the

necessary criteria to build a quantum information processor. For instance, superconducting qubits

are believed to be well suited for fast information processing, whereas photons in waveguides

represent “flying” qubits valid for long-distance data transmission. Therefore, over the past

decade various setups in cQED have been studied in terms of their potential for the storage

and processing of quantum information. Particularly attractive in this context are so-called

“hybrid quantum systems” (HQS), that conflate the individual advantages of different quantum

technologies (see [16] for a recent review). Among recent realizations of such HQS, those based

on spin, atomic or even molecular ensembles coupled to superconducting microwave cavities have

attracted broad attention (see reviews [17, 18]). In such systems the spin or atomic ensemble

plays the role of a quantum memory, to which quantum information is coherently stored and

retrieved from at some later time. The cavity, in turn, serves as a quantum bus for the in- and

output of information as well as for the coupling between several constituents of such HQS. The

technology for building such devices has meanwhile advanced up to the degree that state-of-the-

art experiments can be performed on a single superconducting chip, on which the corresponding

ensemble is probed through the in- and out-coupling of a microwave field. Other interesting

alternatives for HQS are achieved with opto- and nanomechanical systems, which enable the

conversion between microwave and optical photons via phonons. Furthermore, they can effectively

enhance the long-range interaction between distant spin qubits under certain conditions (see [19]

for a recent review).
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The most popular physical realizations of ensembles are based, for instance, on negatively charged

nitrogen-vacancy (NV) defects in diamond [20–24], rare-earth spin ensembles [25, 26], or clouds

of ultracold atoms [27, 28]. Despite the fact that each individual spin is coupled weakly to

the cavity, one can nevertheless reach the strong coupling regime due to the large number of

spins which are collectively coupled to the cavity mode. This nontrivial physics of cooperative

dynamics intrinsically comprises complex collective phenomena such as “superradiance”, which

was originally discovered in 1954 in a gas of two-level atoms independently interacting with a

common radiation field (see the seminal paper by Dicke [29] and the review [30]). However, the

constituents of a large spin ensemble experience different local environments that give rise to

an inhomogeneous line broadening. The latter typically acts as the main source of decoherence

leading to a drastic decrease of the coherence time, which is known to be the major bottleneck

for the processing of quantum information in hybrid quantum technologies.

As a result, various protocols to ensure the controlled and reversible temporal dynamics in the

presence of inhomogeneous broadening were recently the subject of many studies. One of the

proposed techniques in this context is the so-called controlled reversible inhomogeneous broaden-

ing (CRIB) approach [31–33], which is based on a rather subtle preparation method and on the

inversion of atomic detunings during the temporal evolution. Most of the techniques developed

for this purpose are based on photon-echo type approaches in cavity or cavity-less setups and

operate at optical or microwave frequencies, such as those dealing with spin-refocusing [34, 35],

with atomic frequency combs (AFC) [36–43], with electromagnetically induced transparency

(EIT) [44], with off-resonant Raman atomic transitions [45] or with the concept of impedance

matching condition [46–48]. Traditionally, these architectures operate in the optical region and

require additional high-intensity control fields. The resulting large number of excitations is prone

to spoil the delicate quantum information that is encoded in states with extremely low num-

bers of excitations. Other sophisticated concepts based on preselecting the optimal spectral

portion of the inhomogeneously broadened ensemble also have been proposed [49, 50]. They

rely, however, on a strong modification of the intrinsically predefined density profile that is again

very challenging to implement experimentally. Very recent studies propose to access long-lived

dark or subradiant states in atomic or spin ensembles for efficient information storage [51–55].

Also new setup designs without any inhomogeneous broadening such as those based on magnon

modes strongly coupled to a cavity have recently been realized [56, 57]. In this case, however,

the gradient memory is characterized by relatively large intrinsic losses which impose limitations

on the achievable time span of the revival dynamics. Although modern experiments mentioned

above are definitely a step forward towards the realization of efficient memory devices, most of

them are operating far from the single quantum excitation regime and still suffer from various

limitations. On the other hand, these experiments provide an ideal setting for the observation
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of a large variety of complex collective nonlinear many-body phenomena on a chip, so that the

understanding of their dynamics becomes of central importance both in terms of fundamental

research as well as in view of potential future applications.

In my own theoretical work presented here, many of the issues discussed above play an impor-

tant role, in particular various aspects of quantum non-Markovian dynamics in hybrid quantum

systems and their efficient control. The goal of this habilitation thesis is to provide a concise

overview of recent results from my research, which are more extensively presented in the appended

manuscripts. The predictions and concepts following from my theoretical work can be generally

applied to different physical realizations of HQS based on, e.g., rare-earth spin ensembles, ultra-

cold atoms, magnons, ensembles of qubits, etc. coupled to a single-mode cavity or on a single

artificial atom simultaneously coupled to a large discrete number of modes in arbitrary photonic

structures. In particular, my theoretical concepts and methods have been directed towards the

example of one specific experimental realization sketched in Fig. 1, namely a λ/2 superconducting

microwave coplanar waveguide resonator magnetically coupled with a spin ensemble of negatively

charged NV centers in diamond.

The corresponding experiments were carried out in the group of Prof. Hannes-Jörg Schmied-

mayer and Dr. Johannes Majer from the Institute of Atomic and Subatomic Physics, TU Wien.

In the framework of a fruitful collaboration comprising also the group’s former PhD students,

Dr. Stefan Putz and Dr. Robert Amsüss, as well as the current PhD student, Dipl.-Ing. Andreas

Angerer, our predictions have lead to the first experimental realization of the “cavity protection

effect” as well as to the realization of a resonant scheme which ensures efficient energy feeding

into strongly coupled spin-cavity system [58, 59]. Our recently proposed procedure of burning

narrow spectral holes in the spin density at polaritonic positions [54, 60] has meanwhile also been

successfully implemented in the experiment [55]. In our very recent joint work [61], we have

also revealed nontrivial nonlinear spin-cavity dynamics and critical slowing down of the cavity

population and demonstrated a very good agreement between theoretical and experimental re-

sults. Many other theoretical predictions summarized in the following sections are waiting for

their future experimental confirmation in hybrid quantum systems.

This thesis is organized as follows. In section 2 we briefly present a theoretical framework

and some results on non-Markovian dynamics of a single-mode cavity strongly coupled to an

inhomogeneously broadened spin ensemble. We also demonstrate how the decoherence induced

by the inhomogeneous broadening can be suppressed in the strong-coupling regime [I,II]. Section

3 focuses on the spectral engineering which allows us to substantially suppress the decoherence

[III,IV] and to achieve long-lived revival dynamics [V]. The question about optimal control of

non-Markovian dynamics will also be addressed in this section [VI]. Section 4 is devoted to the

nonlinear phenomena such as an amplitude bistability and critical slowing down of the cavity
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population for the same system as in previous sections [VII]. Finally, in section 5 we briefly

discuss a theoretical framework based on a Green’s function technique as well as the main results

obtained on non-Markovian quantum dynamics of an emitter inside an open multimode cavity

[VIII]. We also present some results on a quantum feedback in a cQED system based on an open

cavity coupled to a structured continuum [IX].

I D. O. Krimer, S. Putz, J. Majer, and S. Rotter, “Non-Markovian dynamics of a single-mode cavity

strongly coupled to an inhomogeneously broadened spin ensemble”, Phys. Rev. A 90, 043852

(2014).
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QED”, Nature Physics 10, 720 (2014) (shared first-authorship).
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writing the manuscript.

III D. O. Krimer, B. Hartl, and S. Rotter, “Hybrid quantum systems with collectively coupled spin
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(2015).

Contributions: conceiving the ideas, devising the theoretical framework, performing numerical cal-

culations, writing the manuscript.

IV S. Putz, A. Angerer, D. O. Krimer, R. Glattauer, W. J. Munro, S. Rotter, J. Schmiedmayer, and J.
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36 (2017).

Contributions: conceiving the ideas, devising the theoretical framework, modelling the experiment.

V D. O. Krimer, M. Zens, S. Putz, and S. Rotter, “Sustained photon pulse revivals from inhomoge-

neously broadened spin ensembles”, Laser & Photonics Review 10, 1023 (2016).

Contributions: conceiving the ideas, devising the theoretical framework, performing numerical cal-

culations, writing the manuscript.

VI D. O. Krimer, B. Hartl, F. Mintert, and S. Rotter, “Optimal control of non-Markovian dynamics

in a single-mode cavity strongly coupled to an inhomogeneously broadened spin ensemble”, Phys.

Rev. A 96, 043837 (2017).

Contributions: conceiving the ideas, devising the theoretical framework, writing the manuscript.
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VIII D. O. Krimer, M. Liertzer, S. Rotter, and H.E. Türeci, “Route from spontaneous decay to complex

multimode dynamics in cavity QED”, Phys. Rev. A 89, 033820 (2014).

Contributions: conceiving the ideas, devising the theoretical framework, performing numerical cal-

culations, writing the manuscript.

IX J. Kabuss, D. O. Krimer, S. Rotter, K. Stannigel, A. Knorr, and A. Carmele, “Analytical Study of

Quantum Feedback Enhanced Rabi Oscillations”, Phys. Rev. A 92, 053801 (2015).

Contributions: interpretation of the results, formulation of the conditions for the asymptotically
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a)

b)

Figure 1. Sketch of the hybrid quantum system:

(a) A spin ensemble (yellow) coupled to a transmission-

line resonator (gray) confining the electromagnetic field

inside a small volume.

(b) Scheme of the spin ensemble-cavity coupled system.

An incoming signal η(t) passes through the cavity char-

acterized by a frequency ωc which is coupled to a spin

ensemble with each individual spin of frequency ωj . The

transmitted signal is proportional to the cavity amplitude,

A(t). κ and γ stands for the cavity and spin losses, re-

spectively.

2 Non-Markovian dynamics of a single-mode cavity strongly coupled

to an inhomogeneously broadened spin ensemble

This section gives a brief overview over the main aspects of the temporal dynamics in a HQS

consisting of a large spin ensemble coupled with a single-mode cavity via magnetic or electric

dipole interaction. We also address an important question arising in the context of possible real-

izations of coherent-control schemes, which is how the decoherence caused by the inhomogeneous

distribution can be suppressed in the strong-coupling regime - a phenomenon known as “cavity

protection”. Some results on the resonant collective spin-cavity dynamics are also presented.

2.1 Theoretical model

The theoretical approach introduced in this section is general, but in what follows it will be

compared with one specific experimental realization, namely a λ/2 superconducting microwave

coplanar waveguide resonator magnetically coupled with a spin ensemble of negatively charged

NV centers in diamond (see Fig. 1). To account for the spin-cavity dynamics we start from the

Tavis-Cummings Hamiltonian (~ = 1) [62]

H = ωca
†a+

1

2

∑N

j
ωjσ

z
j + i

∑N

j

[
gjσ

−
j a
† − g∗jσ+

j a
]
− i
[
η(t)a†e−iωpt − η∗(t)aeiωpt

]
, (1)

where a† and a are standard creation and annihilation operators of the single cavity mode with

frequency ωc and σ+
j , σ

−
j , σ

z
j are the Pauli operators associated with each individual spin of

frequency ωj. An incoming signal is characterized by the carrier frequency ωp and by the amplitude

η(t) whose time variation is much slower as compared to 1/ωp. The interaction part of H is

written in the rotating-wave approximation (terms ∝ aσ−j , a
†σ+
j are neglected), where gj stands

for the coupling strength of the j-th spin. We assume that the distance between spins is large

enough such that the dipole-dipole interactions between spins can be neglected.
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Although the individual spin coupling strengths gj are very small, one can nevertheless reach the

strong coupling regime due to the large number of spins which are collectively coupled to the

cavity mode. The effect of collective coupling is particularly evident when reducing the interaction

term to a collective term Ω(S−a† − S+a) [63], where the collective spin operators are given by

S± = Ω−1 ·∑N
j gjσ

±
j . The prefactor Ω2 =

∑N
j g

2
j stands for an effective coupling strength,

which scales up a single coupling strength, gj, by a factor of
√
N . Thus, thanks to this collective

coupling it becomes possible to reach the strong coupling regime by taking large ensembles (see,

e.g., [20, 23] for NV spin ensembles).

Next, one can derive the Heisenberg operator equations, for the cavity and spin operators, ȧ =

i[H, a]−κa, σ̇−k = i[H, σ−k ]−γσ−k , respectively. Here κ and γ stand for the total dissipative cavity

and spin losses. Then, a set of equations for the expectation values (semiclassical approach),

A(t) ≡ 〈a(t)〉 and Bk(t) ≡ 〈σ−k (t)〉, can be derived in the frame rotating with the probe

frequency ωp. During the derivations a few simplifications and approximations are used, which

are valid for various experimental realizations. One of the main assumptions is the limit of low

input powers of an incoming signal, so that the number of microwave photons in the cavity

remains small as compared to the total number of spins participating in the coupling. Thus, the

Holstein-Primakoff-approximation [64], 〈σ(z)
k 〉 ≈ −1, always holds implying that the spin motion

develops in the vicinity of the south pole of the Bloch sphere. Furthermore, the energy of photons

of the external bath, kBT , is assumed to be substantially smaller than that of cavity photons,

kBT � ~ωc. Therefore, the influence of the external bath on the cavity can be neglected.

Another restrictions is that the effective collective coupling strength of the spin ensemble, Ω,

satisfies the inequality Ω � ωc, justifying the rotating-wave approximation. Finally, the spatial

size of the spin ensembles is considered to be sufficiently smaller than the wavelength of a cavity

mode. With all these simplifications the equations for the cavity and spin amplitudes become

Ȧ(t) = − [κ+ i∆c]A(t) +
∑

k
gkBk(t)− η(t), (2a)

Ḃk(t) = − [γ + i∆k]Bk(t)− gkA(t), (2b)

where ∆c = ωc − ωp and ∆k = ωk − ωp are the detunings with respect to the probe frequency.

Owing to the large number of spins within the ensemble, there are a lot of spins in each frequency

subinterval around ωs which make a non-negligible contribution to the dynamics. One can thus

define a continuous spectral density as ρ(ω) =
∑

k g
2
kδ(ω − ωk)/Ω2, where Ω is the collective

coupling strength introduced above, satisfying the normalization condition
∫
dωρ(ω) = 1. As

it turns out, one should take special care when choosing the functional profile of the spectral

distribution for the spin density, ρ(ω), which describes its inhomogeneous broadening and which

plays a crucial role for the dynamics. The specific shape of ρ(ω) can typically be determined by a
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careful comparison with the experiment based on stationary [21] or dynamical [59] transmission

measurements. In the following a q-Gaussian distribution will be used, which phenomenologically

describes very well the shape of the spin spectral density in the experiment [59, 65]

ρ(ω) = C ·
[
1− (1− q)(ω − ωs)2/∆2

]1/(1−q)
. (3)

Here q = 1.39 and ρ(ω) is centered around the cavity frequency ωs = ωc = 2π·2.6915 GHz having

a full-width at half maximum γq = 2∆
√

(2q − 2)/(2q − 2) = 2π ·9.4 MHz. The cavity decay

rate, κ/2π = 0.4 MHz (half-width at half-maximum) and the coupling strength Ω/2π = 8.56

MHz.

By formally integrating Eq. (2b) with respect to time for the spin expectation values and inserting

them into Eq. (2a), one arrives at the following Volterra equation for the cavity amplitude

Ȧ(t) = −[κ+ i∆c]A(t) +
∑

k
gk Bk(T1) e−[γ+i∆k](t−T1) − η(t)− (4)

Ω2

∞∫
0

dω ρ(ω)

t∫
T1

dτ A(τ) e−[γ+i∆ω ](t−τ),

where ∆ω = ω − ωp, Bk(T1) are the initial spin amplitudes at t = T1. Note that the last

term in Eq. (4) strongly depends on the exact shape of the spin density distribution ρ(ω) and is

responsible for the non-Markovian feedback of the spin ensemble on the cavity, so that the cavity

amplitude at time t depends on all previous events τ < t.

It is worth noting that the above predictions are valid not only in the semiclassical but also in

the quantum case, when all spins are initially in the ground state and the cavity mode a contains

initially a single photon, |1, ↓〉. It can be shown that the probability for a photon to reside in the

cavity at time t > 0, N(t) = 〈1, ↓|a†(t)a(t)|1, ↓〉, reduces to N(t) = |〈0, ↓|a(t)|1, ↓〉|2 = |A(t)|2,

where A(t) is the solution of Eq. (4) with the initial condition A(t = 0) = 1 (external drive

η(t) = 0).

2.1.1 Integration of the Volterra equation for the cavity amplitude

One can formally integrate Eq. (4) in time and simplify the resulting double integral on the right-

hand side by partial integration considering the case when the cavity is initially empty, A(T1) = 0,

and all spins are in the ground state, Bk(T1) = 0. To speed up numerical calculations and to make

it numerically tractable, the whole time integration can be divided into successive subintervals,

Tn ≤ t ≤ Tn+1, with n = 1, 2, .... This allows us to derive the recurrence relation for the cavity

amplitude for the n-th time interval, A(n)(t), which depends on all previous events at t < Tn.
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Finally, we end up with the following expression for A(n)(t)

A(n)(t) =

t∫
Tn

dτ K(t− τ)A(n)(τ) +D(n)(t) + F (n)(t), (5)

where the non-Markovian feedback within the n-th time interval is provided by the memory kernel

function K(t− τ)

K(t− τ) = Ω2

∞∫
0

dω ρ(ω)
e−[γ+i∆ω ](t−τ) − e[κ+i∆c](t−τ)

[γ + i∆ω]− [κ+ i∆c]
. (6)

The driving term D(n)(t) in Eq. (5),

D(n)(t) = −
t∫

Tn

dτ η(n)(τ) e−[κ+i∆c](t−τ), (7)

includes an arbitrarily shaped, weak incoming-pulse η(n)(t), defined in the time interval [Tn, Tn+1].

The memory contributions from all previous time intervals for t < Tn are given both through

the amplitude A(n−1)(Tn) and through the memory integrals I(n)(ω), which are contained in the

function

F (n)(t) =

A(n−1)(Tn) e−[κ+i∆c](t−Tn)+ (8)

Ω2

∞∫
0

dω ρ(ω)
e−[γ+i∆(ω)](t−Tn) − e−[κ+i∆c](t−Tn)

[γ + i∆ω]− [κ+ i∆c]
· I(n)(ω)

 ,

where

I(n)(ω) = I(n−1)(ω) e−[γ+i∆ω ](Tn−Tn−1) +

Tn∫
Tn−1

dτ A(n−1)(τ) e−[γ+i∆ω ](Tn−τ), (9)

In accordance with the initial conditions introduced above at t = T1, A(0)(T1) = 0 and I(1)(ω) =

0, so that F (1)(t) vanishes in the first time interval, F (1)(t) = 0 (T1 ≤ t ≤ T2).

2.1.2 Laplace transformation of the Volterra equation

In order to get insight into all possible dynamical behaviors of our system and to make analytical

estimates for different regimes, one can perform a Laplace transform of the Volterra equation

(4) (see [58] for more details), which is briefly sketched below. (This approach is relevant for

the other sections as well.) Let us assume that all spins are initially in the ground state and the

cavity mode a contains initially a single photon, A(0) = 1. One can then multiply Eq. (4) by
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e−st (s = σ + iω is the complex variable) and integrate both sides of the equation with respect

to time to obtain the expression for the Laplace transform. By performing the inverse Laplace

transformation we get the formal solution for the cavity amplitude A(t) which is as follows

A(t)=
ei(ωc−iγ)t

2πi

∫ σ+i∞

σ−i∞

estds

s+ κ− γ + iωc + Ω2
∫∞

0

dωF (ω)

s+ iω

, (10)

where σ > 0 is chosen such that the real parts of all singularities of Ã(s) are smaller than σ.

It turns out that the integral in the denominator of Eq. (10) has a jump when passing across

the negative part of the imaginary axis leading to the branch cut in the complex plane of s. By

setting the denominator of the integrand in Eq. (10) to zero, one can derive the equations for

simple poles, sj = σj + iωj. Next, the Cauchy’s theorem for closed contours can be applied to

evaluate the formal integral (10) and, finally, the following expression for the cavity amplitude is

derived

A(t) = eiωct

{
Ω2

∫ ∞
0

dωe−iωtU(ω) +
∑
j

Rj

}
, (11)

where

U(ω) = lim
σ→0+

{
ρ(ω)

(ω−ωc−Ω2δ(ω) +i(κ− γ))2+(πΩ2ρ(ω)+σ)2

}
. (12)

is the kernel function and

δ(ω) = P
∫ ∞

0

dω̃ρ(ω̃)

ω−ω̃ (13)

has the meaning of the nonlinear Lamb shift of the cavity frequency ωc, which depends on the

spin spectral distribution, ρ(ω). Here P stands for the Cauchy principal value and Rj is the

contribution of poles (if at all existing), the expression for which can be found in [58].

2.2 Non-Markovian spin-cavity dynamics

The typical experimental results of the dynamics under the action of rectangular pulse for dif-

ferent values of the probe frequency ωp are displayed in Fig. 2. This pulse has a duration

substantially longer than the resulting period of damped Rabi oscillations and the inverse of the

total decay rate, so that the system sets into a steady state before the signal is turned off. One

clearly sees two polaritonic peaks in the structure of the transmission which are split by the

Rabi frequency ΩR. These peaks correspond to two effective eigenstates of the coupled system
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Figure 2. (adapted from [59]). (a) Time domain measurements of the cavity transmission under the action of

a rectangular microwave pulse through the cavity vs. time and probe frequency ωp (the spins are on resonance

with the cavity, ωs = ωc). The observation of a strong mode-splitting into the two hybridized modes |Ψ±〉 ≈
1√
2
(|0〉c|1〉s ± |1〉c|0〉s) (see dark red enhancements split by the Rabi frequency ΩR/2π = 19.2 MHz) confirm

that the system is in the deep strong-coupling regime. (b) The dynamics at the resonant probe frequency

ωp = ωs = ωc [white dashed line in (a)] is compared with the theoretical prediction for the cavity probability

amplitude |A(t)|2 (experiment: black, theory: red). Excellent agreement is achieved when incorporating the

q-Gaussian shape (3) for the spectral spin distribution.

represented by symmetric and antisymmetric superposition of the cavity and spin eigenstates,

|Ψ±〉 ≈ (|0〉c|1〉s ± |1〉c|0〉s) /
√

2. To accurately describe the collective spin-cavity dynamics, we

set up the Volterra integral equation (5) for the cavity amplitude that contains a memory kernel

(6) with information about all previous events in the system. Our numerical calculations show

an excellent agreement with the experimental results only if the q-Gaussian shape (3) for the

spin density is taken underlining that a precise knowledge of the inhomogeneous spin distribution

is crucial for the understanding of time domain measurements [58, 59]. After turning on and

switching off the microwave pulse coherent Rabi oscillations occur between the cavity and the

spin ensemble, which are reproduced very accurately including their damping [see Fig. 2(b)]. In-

terestingly, the first Rabi peak shows a pronounced overshoot after switching off the microwave

drive, at which the energy stored in the spin ensemble is coherently released back into the cavity.

These oscillations are a hallmark of the non-Markovian character of the system dynamics in the

strong-coupling regime.

We have also found a very efficient scheme, which allows us to reach high excitation levels

in the spin ensemble with a driving signal that has only limited power to avoid heating up

the hybrid quantum device. For that purpose, the cavity is pumped by a pulse whose driving

amplitude is periodically modulated with the Rabi period, 2π/ΩR, and the driving frequency is

kept in resonance, ωp = ωc = ωs. Note that at this resonant driving the steady-state Rabi
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Figure 3. (adapted from [58, 59]). (a) Resonant dy-

namics under the action of 11 successive rectangular mi-

crowave pulses, phase switched by π (alternating gray

and white vertical bars). This specific driving corre-

sponds to the largest enhancement of both the cavity

amplitude |A(t)|2 and the x-component of the collective

spin J2
x(t) which coherently exchange the energy during

the course of time. Red curve: results of numerical cal-

culations for |A(t)|2. Orange curve: results of numerical

calculations for J2
x(t). Black curve: |A(t)|2 measured in

the experiment. The last white area corresponds to the

damped dynamics when the driving signal is switched off.

(b) Decay rate Γ of the the cavity mode |A(t)|2 versus

coupling strength Ω [58, 59]. Red curve: decay rates ex-

tracted from the full numerical calculations. Black sym-

bols: experimentally observed decay rates. Green curve

(1): Decay rate under the assumption of a Lorentzian

distribution of the spin density. The overdamped regime

(Ω/2π < 1.8 MHz) is characterised by two exponents

given by Γ = ∆ + κ ±
√

(∆− κ)2 − 4Ω2. The regime

of underdamped oscillations (Ω/2π > 1.8 MHz) has the

constant decay rate, Γ = ∆ + κ. Orange curve (2):

Γ derived under Markovian approximation, Γ = 2[κ +

πΩ2ρ(ωs)]. Magenta curve (3): an estimate for Γ within

the strong coupling regime with a well-resolved Rabi

splitting in the limit of Ω→∞, Γ = κ+πΩ2ρ(ωs±Ω).

Blue curve (4): the decay rate in the absence of dephas-

ing.

oscillation amplitude [Fig. 3(a)] exceeds the stationary amplitude reached under the action of a

long rectangular pulse [Fig. 2(b)] by two orders of magnitude, although the net power injected

into the cavity is exactly the same in both cases. It is worth noting that the cavity and spin

ensemble coherently exchange their energy during the course of time, so that the cavity amplitude

|A(t)|2 oscillates in antiphase with respect to the spin ensemble component J2
x(t), see Fig. 3(b).

2.3 Total decoherence and the cavity protection effect

In a next step we address an important question arising in the context of possible realizations of

coherent-control schemes, which is how to efficiently suppress the decoherence in the spin-cavity

dynamics. The total decoherence in the system consists of two major contributions: The first

one is due to dissipative cavity losses, while the second one originates from the inhomogeneous
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broadening of the spin ensemble which leads to the dephasing of spins during the time evolution.

Actually, precisely this dephasing mechanism gives the dominant contribution to the decoherence

(the spin dissipation γ is negligible in our case). Our starting point here is a Laplace transform

of the Volterra equation briefly discussed in section 2.1.2 from which we estimate the total rate

of decoherence to be

Γ ≈ κ+ πΩ2ρ(ωs ± Ω), (14)

also in agreement with a stationary analysis [66]. Thus, the value of Γ is determined by the spin

density ρ(ω), evaluated close to the maxima of the two polaritonic peaks, ω = ωs ± Ω, split by

the Rabi frequency ΩR ≈ 2Ω due to strong coupling.

It follows from the above estimate that for spectral distributions ρ(ω) whose tails fall off faster

than 1/ω2, an increasing coupling strength inevitably leads to a reduction of the decay rate Γ, so

that the system will finally be protected against decoherence, a phenomenon referred to as “cavity

protection effect” [66, 67]. It is not hard to see that our q-Gaussian satisfies such a requirement,

whereas a Lorentzian spin distribution does not. As a consequence, the latter does not protect

the cavity against decoherence, featuring a constant decay rate in the strong coupling regime

[see green line in Fig. 3(b)]. To clarify the role played by the non-Lorentzian inhomogeneous

broadening, we classify the dynamics by calculating and measuring the total decay rate Γ of the

cavity amplitude squared, |A(t)|2, from its steady state value for different coupling strengths

Ω, see Fig. 3(b). While the maximally reachable value in the experiment already leads to a

considerable reduction of Γ by 50% below its maximum, our numerical results for the q-Gaussian

predict a further reduction of the decay rate with increasing coupling strength by an order of

magnitude [see Fig. 3(b)]. It is important to note, that the minimal possible value for the decay

rate reached in the limit of large Ω is κ as the decay rate for a bare cavity without diamond is

2κ. This can be explained by the fact that due to the strong coupling between the spin ensemble

and the cavity, the excitation is trapped by 50% within the spin ensemble which has a negligible

direct decay rate during the course of our experiment.

Physically, the “cavity protection effect” can be understood as follows: In the presence of inhomo-

geneous spin broadening, the polariton states, defined as superpositions of the cavity mode with

the superradiant (bright) spin-wave modes, become coupled to the sub-radiant (dark) spin-wave

modes [58, 67]. This coupling acts as the main source of decoherence, leading to a strong damp-

ing of the polariton modes. However, for strong enough coupling strength, the Rabi-splitting of

the polariton peaks opens up a gap for the super-radiant polaritons. If the spectral profile of the

inhomogeneous spin distribution decays sufficiently fast for increasing gap size, an energetic de-

coupling of the super-radiant polaritons from the sub-radiant spin-wave modes occurs, leading to

a suppressed damping of the polaritons and to a corresponding decrease of their peak linewidth.
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This section was devoted to the study of the dynamics in a single-mode resonator strongly

coupled to a spin ensemble. It is demonstrated that a precise knowledge of the inhomogeneous

spin distribution is crucial both for a qualitative and a quantitative understanding of the temporal

spin-cavity dynamics. It is also shown how the decoherence from inhomogeneous broadening can

be substantially diminished using the “cavity protection effect”, resulting in considerably extended

coherence times in HQS. However, to fully bring to bear the potential of the “cavity protection”

effect discussed above requires going to very high values of the coupling strength, which can be

achieved, for example, by increasing the spin concentration within a spin ensemble. An increased

spin concentration, however, would cause non-negligible dipole-dipole interactions between spins

which spoil the effects under consideration and should be explored separately. Very recently, we

proposed a method that circumvents this problem [54], which is the subject of the next section.

3 Spectral engineering and optimal control of non-Markovian

dynamics

In this section we present an alternative way to overcome the detrimental influence of inhomoge-

neous broadening and show how to drastically suppress the decoherence reaching the values for

the decay rates which lie significantly below the fundamental limit set by the “cavity protection

effect”. For this purpose we propose a very elementary concept of hole burning into the spin

spectral density at judiciously chosen frequencies that requires only a reduced experimental effort.

We then demonstrate that engineering the spin spectral density to acquire a comb-like structure

leads to coherent revival dynamics and show how to drastically improve the performance of the

resulting multimode regime. Finally, we present an efficient optimal control scheme based on

Volterra equations and demonstrate the viability of our approach in terms of explicit storage and

readout sequences that will serve as a starting point towards the realization of more demanding

full quantum mechanical optimal control schemes.

3.1 Burning narrow spectral holes close to the polaritonic peaks

We begin our analysis from the analytical estimate (14) for the decoherence rate in the strong

coupling regime, Γ ≈ κ+πΩ2ρ(ωs±Ω), and take this relation literally, assuming that the deco-

herence rate can be strongly suppressed by burning two spectral holes into the spin distribution

ρ(ω) close to the positions of the polaritonic peaks, ω = ωs ± Ω, such that ρ(ωs ± Ω) = 0. At

the same time, the width of the holes has to be chosen very small, such as to remove only a

negligible fraction of the spins by the hole burning. It is important to note that for this strategy

the precise shape of the spin density distribution plays practically no role since only the values of
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(d) Figure 4. (adapted from [54, 55]). Comparison of the

cavity coupled to the inhomogeneously broadened spin

ensemble without and with hole burning in the spin den-

sity profile. Top row: The q-Gaussian spin density distri-

bution, ρ(ω), without [(a)] and with hole burning [(d)] at

ωh = ωs±Ω. Both holes are of equal width. Second row:

Transmission T (ω) without [(b)] and with hole burning

[(e)] in ρ(ω) (note different y-axes scale). Third row:

The corresponding nonlinear Lamb shift δ(ω). Filled cir-

cles label resonance values ωr of the transmission T (ω)

occurring at the intersections between the Lamb shift

δ(ω) and the dashed line (ω− ωc)/Ω2. At empty circles

such intersections are non-resonant.

(g,h): Solution of the eigenvalue problem as a func-

tion of the mean spin frequency ωs of the spectral den-

sity ρ(ω) shown in (a) and, respectively, in (d). The

cavity content, |Al|2, of the normalised eigenvector,

ψl = (Al, B
k
l ), versus eigenfrequencies Im(λl) and ωs

is represented by the color gradient (color bar on the

right in log scale). Two polariton modes in a bath of

subradiant states are visible in (g). Spectral hole burn-

ing at ωh = ωs ± Ω creates long-lived dark states which

become partially visible.

ρ(ω) at ω = ωs ± Ω do contribute to the total decoherence rate.

To demonstrate the efficiency of this approach explicitly, we first perform a stationary analysis of

the transmission T (ω) through the microwave resonator as a function of the probing frequency

ω [by putting Ȧ(t) = Ḃk(t) = 0 into Eqs. (2a,2b)]. This quantity, which is directly accessible

in the experiment [58, 59], provides direct access to the occupation amplitude of the cavity

[T (ω) ∝ A(ω)]. Assuming γ → 0, the transmission T (ω) acquires the following form,

T (ω) =
iκ

ω−ωc−Ω2δ(ω) + i[κ+ πΩ2ρ(ω)]
, (15)

where δ(ω) is the nonlinear Lamb shift given by Eq. (13). In the reference case taken from

our previous studies [58, 59], ρ(ω) is given by Eq. (3) and has no holes, see Fig. 4(a). In this

case the transmission |T (ω)|2 displays the well-resolved double-peak structure typical for the

strong-coupling regime, see Fig. 4(b). If one now burns two narrow holes into the spin density at

the relevant positions ωh = ωs ± Ω, see Fig. 4(d), and reevaluate |T (ω)|2, a more than 50-fold

increase in the corresponding peak values is observed, see Fig. 4(e). This dramatic change is

all the more surprising considering that the relative number of spins removed from ρ(ω) through
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the hole burning is less than 3%.

To understand this behavior it is best to analyze the real and imaginary parts of the denominator

of T (ω), see Eq. (15). For the observed transmission resonances at ω = ωr with a maximum value

of T (ωr) = 1 to occur, two conditions are satisfied simultaneously: (i) (ωr − ωc)/Ω2 = δ(ωr)

and (ii) ρ(ωr) = 0. Consider first condition (i): In the reference case without holes, see Fig. 4(c),

the nonlinear Lamb shift δ(ω) displays rather smooth variations in the vicinity of the resonant

frequencies ωr, determined by the intersection of δ(ω) and a straight line (ω − ωc)/Ω
2. In

contrast, for the case with hole burning, see Fig. 4(f), δ(ω) exhibits rapid variations around the

two resonance points within a very narrow spectral interval. As a consequence, the resultant

transmission peaks become substantially sharper. Due to the second condition (ii) they also

dramatically increase in height. Note, that no resonance occurs at ω = ωc because ρ(ω) has

a maximum at this point and condition (ii) is strongly violated, see Fig. 4(c),(f). A close

examination of the structure of T (ω) shows, furthermore, that the narrow transmission peaks

resultant from the hole burning do not replace the broad polaritonic peaks present in the reference

case, but rather get to sit on top of them. As will be seen below, these two different resonance

widths in T (ω) set two different time scales in the dynamics with, in particular, the sharp peaks

in the transmission giving rise to an asymptotically slowly decaying dynamics with a strongly

suppressed decoherence.

3.2 Eigenvalue analysis and the concept of dark states

The physics of spectral hole burning discussed above can be thoroughly understood and most

vividly illustrated by solving the eigenvalue problem of our hybrid spin-cavity system and analyzing

the resulting spectra. For this purpose one can discretise the spectral spin distribution ρ(ω)

in the frequency domain, which is described by the q-Gaussian shape (3), by performing the

transformation, gj = Ω · [ρ(ωj)/
∑

l ρ(ωl)]
1/2, where Ω2 =

∑
j g

2
j as before stands for the

collective coupling strength. Since in total we deal with a sizable number of spins (N ≈ 1012),

this problem can be made numerically tractable by dividing spins into many subgroups with

approximately the same coupling strengths, so that the numerical values for gj above represent

a coupling strength within each subgroup rather than an individual coupling strength. One can

then substitute A(t) = A · exp(−λt), Bk(t) = Bk · exp(−λt) as well as η(t) = 0 into Eqs. (2a,

2b) for the cavity and spin expectation values to derive the complex eigenvalue problem for λ,
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which can be represented as, Lψl = λlψl, where

L =


κ −g1 −g2 ... −gN
g1 γ + i(ω1 − ωc) 0 ... 0

g2 0 γ + i(ω2 − ωc) ... 0

... ... ... ... ...

gN 0 0 ... γ + i(ωN − ωc)

 , (16)

and ψl = (A B1 B2 ... BN)T being the eigenvector which represents the collective spin-cavity

excitation belonging to the eigenvalue λl.

The results of the corresponding numerical calculations are presented in Fig. 4(g,h), where the

cavity content, |Al|2, of the normalized eigenvector ψl is plotted as a function of the mean

frequency ωs of ρ(ω) and the calculated collective eigenfrequency Im(λl) for two cases, without

[Fig. 4(g)] and with hole burning [Fig. 4(h)]. In the absence of hole burning, one can clearly

observe two polaritonic peaks in the structure of the spectrum, which are shown by purple colour

in Fig. 4(g). Additionally, there is a major number of pure spin eigenvectors colored in blue in

the same figure, which contain a negligibly small amount of cavity content. As a result, these

states are decoupled from the cavity being not accessible by transmission spectroscopy and are,

therefore, referred to as dark states - a concept that was originally introduced as a particular state

of a three-level atom driven by two fields, which cannot absorb or emit photons [68]. However,

as a result of hole burning a certain amount of these collective dark states acquire a significant

cavity content [Fig. 4(h)], so that the cavity can “decay” into any of these states, and as a result,

they become visible. It is worth noting that the decay rates of such engineered dark states are

bounded from below just by a single spin decay rate γ and, in fact, can be substantially smaller

than the dissipation rate of the bare cavity κ, since in our system the inequality, γ � κ, always

holds (see also the next section).

3.3 Dynamics in the presence of hole burning

To reach our ultimate goal of understanding the influence of the spectral hole burning on the

resultant dynamics, we now study the time evolution of A(t) governed by the Volterra equation

(4) explicitly for the resonant case ωp = ωc = ωs. To prove that all predictions are valid not

only in the semiclassical but also in the quantum case, the case when all spins are initially in

the ground state and the cavity mode a contains initially a single photon, |1, ↓〉, is considered.

The probability for a photon to reside in the cavity at time t > 0, N(t) = 〈1, ↓|a†(t)a(t)|1, ↓〉,
reduces to N(t) = |〈0, ↓|a(t)|1, ↓〉|2 = |A(t)|2, where A(t) is the solution of Eq. (4) with the

initial condition A(t = 0) = 1 and Bk(t = 0) = 0 (external drive η(t) = 0). For the case

without hole burning this solution is represented by the damped Rabi oscillations [see Fig. 5(a)]
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Figure 5. (adapted from [54, 55]). Theory: Decay

of the cavity occupation N(t) = 〈1, ↓ |a†(t)a(t)|1, ↓〉
from the initial state, for which a single photon with

frequency ωc resides in the cavity and all spins are un-

excited. The asymptotic decay Ce−Γt with and without

hole burning (see red lines) is determined by the con-

stants Γ/2π = 3 MHz in (a) and a drastically reduced

Γ = 0.42κ = 2π · 0.17 MHz in (b). The holes in ρ(ω)

have a width ∆h/2π = 1.4 MHz and are burnt at t = 0

at ωh = ωs ± Ω.

Experiment: (c) Linear dynamical response for a sinu-

soidally modulated weak pulse. (d) The substantially

improved coherence time is shown by probing the sys-

tem as in (c), but 5µs after spectral holes are burnt at

ωs/2π ± 9.6 MHz with a band width ∆/2π = 235 kHz

and the cavity was emptied.

found already previously (see section 2.2). By burning narrow holes in ρ(ω) at ωh = ωs ± Ω

(immediately before t = 0)1, one observes very similar transient dynamics, which is followed,

however, by a crossover to Rabi oscillations with a much slower asymptotic decay [see Fig. 5(b)].

Quite remarkably, the total decay rate Γ in this asymptotic time limit turns out to be substantially

smaller than the fundamental limit of half the bare cavity decay rate κ set by the recently proposed

“cavity protection effect” (see section 2.3). Apparently a new type of physics is at work here

being directly related to the emergence of long-lived engineered dark states introduced in the

previous section, which are characterized by a decay rate substantially smaller than κ. (Note that

the main requirement for our theory to be applied is that the losses exhibited by each individual

constituent in the ensemble, γ, are substantially smaller as compared to the bare cavity decay

rate, κ, which is well fulfilled here.) From the mathematical point of view such a slow asymptotic

behavior can also be associated with the contribution of two poles in the Laplace transform of

Eq. (11), which appear when the holes in ρ(ω) reach a critical depth. The pole contributions

also stabilize the long-time behavior when the holes are shifted away from the polaritonic peaks

1 Experimentally, our approach was implemented [55] by modulating the high-intensity harmonic field that drives

the cavity at its resonance frequency with a sum of two sinusoidal envelopes with spectral components near

the polaritonic positions, η(t) ∼ sin(±ΩRt/2) · exp(−iωct), i.e., the result is a drive at polaritonic frequencies,

ωc ± ΩR/2. When being strong enough in intensity this two-frequency drive will eventually excite all spins in

the ensemble at these frequencies to a mixture between ground and excited state. As a result, these spins will

be effectively removed from the coupling process with the cavity and a further application of the weak resonant

driving signal, η(t) ∼ exp(−iωct) cannot change this balance. Thus, it is equivalent to saying that we have

burned two holes into the spin distribution located at ωc ± ΩR/2.
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[54], but the optimal hole positions remain close to the polaritonic peaks. Note that despite the

considerable photon loss (N(t) � 1) for long times the phase coherence is very well preserved

here, a clear signature of which is the stable form of the Rabi oscillations. In this way a high

“visibility” can be achieved that is needed for the efficient processing of quantum information

[38].

In Fig. 5(c,d) we present the experimental results [55] for the case when the system is driven

with a weak (<10−5 photons per spin) sinusoidally modulated pulse. In the absence of spectral

holes the unchanged system decay rate Γ/2π ∼ 1.45 MHz is observed after switching off the

driving tone, see Fig. 5(c). Applying a hole burning pulse, and waiting 5µs after the signal has

decayed, the system is probed again. After the weak probe pulse is switched off, different decay

rates are clearly distinguishable in the Rabi oscillations, see Fig. 5(d). At first a reduced decay

rate, Γ′/2π ∼ 550 kHz, is observed due to the created spectral holes and reduced damping of

the bright polariton modes. This first decay is followed by a crossover to a second much slower

decay, ΓD/2π ∼ 200 kHz, featuring long-lived Rabi oscillations as the hallmark of the created

dark states. Furthermore, by burning four spectral holes at special positions [55] it is possible to

create multiple pairs of dark states, such that two revivals in the Rabi oscillations appear (not

shown here), which is a clear signature of the coherent dark states beating against each other.

This is a first step towards the realization of a solid-state microwave frequency comb, in which

one could ideally address up many long lived dark states in one polariton mode.

3.4 Photon pulse revivals from inhomogeneously broadened spin ensembles

The above concept of hole burning is rather general and also applicable to more sophisticated

cases - it will thus be referred to as spectral engineering of the spin density [60]. In this section we

demonstrate how to overcome the problem of decoherence by burning well-placed holes into the

comb-shaped spectral spin density leading to spectacular performance in the multimode regime.

The resulting multimode dynamics is ideally suited for the purpose of developing efficient memory

elements due to a constructive rephasing of spins in the ensemble and a collective coherent

reemission of the stored information at predetermined moments of time.

Starting point of our analysis is an arrangement of several inhomogeneously broadened spin

ensembles coupled to a single cavity mode with frequency ωc. The spin ensembles are assumed

to be prepared with mean frequencies that are equidistantly spaced at intervals of ∆ω, such that

ω
(µ)
s = ωc ± nµ∆ω, resulting in a comb-shaped spectral density F (ω). While this approach is

general we will be referring in the following to one particular experimental realization based on

magnetic coupling of NV-ensembles residing in several diamonds coupled to a superconducting

microwave resonator. Note that by an appropriate aligning of the diamonds with respect to

an external magnetic field and by exploiting the Zeeman effect, the mean frequencies of the
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Figure 6. (taken from [60]). Upper row: Single-mode strong coupling regime. Solution of the eigenvalue

problem at Ω/2π = 8 MHz as a function of the mean spin frequency ωs of the spectral function F (ω) =∑M
µ=1 Ω2

µ/Ω
2 · ρµ(ω), consisting of seven equally spaced q-Gaussians [given by Eq. (3)] of equal width, γq/2π =

9.4 MHz. F (ω) has peaks at frequencies ω
(µ)
s = ωc ± nµ∆ω with the spacing, ∆ω/2π = 40 MHz. The cavity

frequency ωc coincides with the mean frequency of the central q-Gaussian, ωs = ωc = 2π · 2.6915 GHz. Spin

ensembles have coupling strengths distributed as Ω2
µ/Ω

2 = exp[−(ωc − ω(µ)
s )2/2σ2

G], with σG/2π = 150 MHz.

(a) The cavity content, |Al|2, of the normalised eigenvector, ψl = (Al, B
k
l ), versus eigenfrequencies Im(λl) and

ωs is represented by the color gradient (color bar on the right in log scale): two prominent polariton modes are

clearly distinguishable from a bath of dark states at fixed value of ωs. (b) the cavity content |Al|2 versus Im(λl)

for the resonant case, ωs = ωc, along the vertical cut shown in (a) (dashed blued line). (c) |Al|2 versus decay

rates, Re(λl), and ωs with the same coloring as in (a). Cyan dashed line: the minimally reachable decay rate

achieved due to the cavity protection effect, Γ/2 ≈ κ/2 (limit of γ � κ), with κ = 2π · 0.4 MHz (HWHM of the

cavity decay) and γ = 2π · 0.01 MHz� κ (HWHM of the spin decay). White dashed line: decay rate of a bare

cavity mode, κ.

Lower row: Multimode strong coupling regime. Solution of the same eigenvalue problem as above, but for

an increased coupling strength Ω/2π = 26 MHz (notation and colors are the same as in the upper row). Eight

polariton modes are clearly distinguishable with an almost equidistant spacing, see (e) for the resonant case,

ωs = ωc. In all calculations N = 1200 spins were used.
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spin ensembles, ω
(µ)
s , can be efficiently tuned in a rather wide spectral interval [20, 21]. Let us

first investigate how the eigenvalues and the corresponding eigenstates of this hybrid cavity-spin

system look like using the method described in sec. 3.2. For this purpose one can derive and

solve numerically the non-Hermitian eigenvalue problem Lψl = λlψl, with ψl = (Al, B
k
l )T being

the eigenvector which represents the collective spin-cavity excitation belonging to the eigenvalue

λl. Note that Im(λl) plays the role of the collective eigenfrequency and Re(λl) > 0 is the rate at

which ψl decays. When solving this eigenvalue problem one always has to keep the same shape

for the spectral function F (ω) but shift the whole structure in the frequency domain by detuning

the mean spin frequency ωs of the central ensemble with respect to the cavity ωc. The only other

variable parameter is the value of the collective coupling strength Ω, that is tuned from the limit

where the cavity mode is strongly coupled solely to the central spin subensemble to the regime

of “multimode strong coupling”.

The results of numerical calculations are presented in Fig. 6 where the cavity content, |Al|2,

of the normalized eigenvector, ψl, is displayed as a function of ωs and the calculated collective

eigenfrequency Im(λl) [(a),(d)] or decay rate Re(λl) [(c),(f)]. We begin with the regime where

the value for the coupling strength of each spin ensemble separately is large enough to ensure

strong coupling to the cavity. In this “single-mode strong coupling limit” one observes an avoided

crossing in Fig. 6(a) whenever the resonance condition with the µ-th ensemble is met, ω
(µ)
s = ωc.

The other off-resonant spin ensembles in turn give rise to a small dispersive contribution only.

The most pronounced avoided crossing is observed when the cavity is at resonance with the

central spin ensemble, ωs = ωc, where two symmetric polaritonic peaks in the structure of

|Al|2 occur, see Fig. 6(b). It is also seen from Fig. 6(c) [yellow symbols] that a large fraction

of eigenstates, ψl, decays with some intermediate values of the decay rate which lie within the

interval γ < Reλl < κ. (Here κ and γ � κ are the dissipative cavity and spin losses, respectively.)

This can be explained by the fact that such eigenvectors represent an entangled spin-cavity state,

where both the cavity and spin contents are essentially nonzero.

With a further increase of the coupling strength, the distance between two polaritonic peaks

depicted in Fig. 6(b), which is approximately as large as 2Ω, increases and the peak line shapes

become substantially sharper (not shown). Such a peak narrowing can be attributed to the

“cavity protection effect” (see sec. 2.3). At even larger values of Ω the usual form of the avoided

crossings eventually disappears, being replaced instead by a comb-shaped structure with parallel

stripes characterised by a large cavity content, see yellow curves in Fig. 6(d). Such a picture is,

however, valid only for moderate values of detuning of ωs from ωc, whereas for large detuning

we are in the dispersive regime [see Fig. 6(d,f)]. A comb-shaped structure of |Al|2 with almost

equally spaced polaritonic peaks is clearly seen at resonance, ωs = ωc, indicating the multimode

strong coupling between all spin ensembles and the cavity mode [see Fig. 6(e)].
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The shapes of |Al|2 versus Im(λl) at ωs = ωc for both the multimode and the single-mode

strong coupling regime reproduce exactly the corresponding shapes of the kernel function U(ω)

obtained in the framework of the Laplace transform technique sketched in sec. 2.1.2. Thus these

two alternative concepts represent two sides of the same coin: all complex features which appear

in the structure of the eigenvalue spectrum displayed in Fig. 6 are correspondingly reflected in

the properties of the kernel function (12) and the nonlinear Lamb shift (13) (see also [60] for

more details).

3.4.1 Suppression of decoherence in the multimode strong-coupling regime

The narrow peaks in the frequency domain displayed in Fig. 6(e) are exactly those that are

responsible for the pulsed emission in the time domain (see [60] for details). Next, we explore the

question of how to suppress the decoherence in the multimode strong-coupling regime [60]. For

this purpose one can take advantage of the strategy [54] introduced in sec. 3.1, that for single-

mode strong-coupling the decoherence induced by the spin broadening can be strongly suppressed

simply by burning two narrow spectral holes in the spin spectral density close to the maxima of

the two polaritonic peaks as shown here in Fig. 6(b). The working principle of this effect is

based on the creation of long-lived collective dark states (see sec. 3.2) in the spin ensemble that

only have very little cavity content and may thus even outperform the ultimate limit for the

decoherence rate of the cavity protection effect given by Γ = κ for γ � κ [54]. (Note that the

decay rate for a bare cavity without spin ensembles coupled to it is 2κ.) Mathematically, this

effect can also be associated with rapid variations of the nonlinear Lamb shift around the holes’

positions and with contribution of poles in the Laplace transform of the Volterra equation derived

above [54].

The most natural extension of this hole-burning approach to the multimode regime would demand

that the positions of the burnt spectral holes remain close to the polaritonic peaks of which we

observe altogether eight in Fig. 6(e), corresponding to the seven spin-subensembles. It was

therefore proposed [60] to burn eight narrow spectral holes into the spectral distribution F (ω) at

frequencies which correspond to the maxima of the cavity content, |Al|2, shown in Fig. 6(e) (or,

equivalently, to the maxima of the Laplace transformed kernel function U(ω), see sec. 2.1.2).

This hole burning is essentially a nonlinear process, which can not be captured by the Volterra

equation, but the system dynamics may very well be described right after the holes have been

burnt. For this purpose one can directly integrate the Volterra equation (4) numerically in time,

resulting in the time evolution for both the quantum and the semiclassical case, which looks

qualitatively very similar for both cases (see Fig. 7, where the results for the semiclassical case

are presented only). For these results the holes are assumed to be burnt at t = 0 keeping their

shape during the whole time interval shown in Fig. 7, a property which is well-fulfilled in recent
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Figure 7. (taken from [60]). (a) Cavity probability amplitude |A(t)|2 versus time t under the action of an

incident short rectangular pulse of duration 6 ns after eight holes are burnt at t = 0 close to the eight polaritonic

peaks depicted in Fig. 6(e). The distance between temporal peaks (revival time) is, Trev ≈ 2π/∆ω, where

∆ω is the spacing in a comb-shaped spectral density F (ω). (b) Same as (a) with the ordinate plotted on a

logarithmic scale. The decay process with the minimal decay rate reachable by the cavity protection effect, e−κt,

with κ/2π = 0.4 MHz is depicted by the dashed line (limit of γ � κ). The decay rate of |A(t)|2 for a bare cavity

without spin ensembles coupled to it is given by e−2κt (not shown).

experiments where the hole lifetime was estimated to be as large as 27µs [55].

Most importantly, it is very clearly seen in Fig. 7 that the pulsed emission from the spin ensemble,

which is characterized by the revival time, Trev ≈ 2π/∆ω, persists over a drastically increased

time interval as compared to the corresponding case without hole burning (not shown). This

suppression of decoherence is not only a quantitative improvement, but it breaks the barrier

achievable when making maximal use of the “cavity protection effect”. To illustrate this explicitly,

in Fig. 7(b) the results from Fig. 7(a) are replotted on a logarithmic scale and compared with

the minimal exponential decay e−κt of the fully cavity-protected ensemble. It turns out that the

probabilities |A(t)|2 for the photon pulse revivals significantly exceed this barrier such that, e.g.,

at t ∼ 3µs after the driving pulse, the values for |A(t)|2 are two orders of magnitude above

those achievable through cavity-protection.

In summary we presented a novel approach to suppress the decoherence in quantum memories

based on inhomogeneously broadened spin ensembles coupled to a cavity. The main idea of the

proposed hole burning technique is, as the name indicates, to burn narrow spectral holes in the

spin density at the polaritonic peak positions through the cavity or from the outside. After such

a preparatory step, the quantum information (as stored, e.g., in a qubit [23]) may be transferred

through the cavity bus to the spins from where it is reemitted back into the cavity at periodic

time intervals in the form of Rabi oscillations or pulsed revivals without requiring any further

refocusing techniques.
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3.5 Optimal control of non-Markovian dynamics

Having understood in detail the spin-cavity dynamics and how to efficiently suppress the decoher-

ence caused by inhomogeneous broadening, we now take advantage of these findings and move

on to another important question related to the optimal control of the information stored into

and retrieved from a spin ensemble. In this context it is worth noting that owing to the tight field

confinement inside a cavity, one can achieve a better storage and retrieval efficiency as compared

to cavity-less setups [37, 38]. Another advantage of using a cavity is that the phase initially

encoded in the cavity amplitude is very well preserved during the course of time, a clear signature

of which is the stable form of the Rabi oscillations and pulsed revivals which we observed so far.

Furthermore, in contrast to established echo techniques [34–40, 69] our scheme only involves

low-intensity write and readout signals and therefore diminishes the influence of noise caused

by writing and reading pulses. We develop a very efficient semiclassical optimization technique

[70] based on a set of Volterra integral equations similar to those in Eq. (4), which allows us to

write information into a spin ensemble coupled to a single cavity mode by means of optimized

microwave pulses and to retrieve it at some later time in the form of well-separated cavity re-

sponses. The applicability of this approach is also demonstrated in conjunction with a previously

described spectral hole-burning technique that allows us to reach storage times going far beyond

the dephasing time of the inhomogeneously broadened ensemble.

The aim is to look at the transfer of states from the cavity to the spin ensemble, its storage

over a well-defined period of time, and its transfer back to the cavity. Our control scheme thus

consists of a write and readout section, with a variable delay section in between. Starting from

a polarized state with all spins in their ground state, we construct (i) two write pulses η
(W )
|0〉 (t)

and η
(W )
|1〉 (t) that encode the respective logical states |0〉 and |1〉 in the spin ensemble. During

the delay section (ii) the information is subject to dephasing by the inhomogeneous ensemble

broadening and the external drive is optimized here to reduce the cavity amplitude A(t) ≡ 〈a(t)〉
(to prevent the information in the spin ensemble from leaking back to the cavity prematurely).

In the readout section (iii) the readout pulse η(R)(t) is switched on that maps the two logical

states of the spin ensemble on two mutually orthogonal states of the cavity field. Note that the

write pulses (i) are specific for the input states |0〉 and |1〉, but pulses (ii) and (iii) are generic as

they are designed without prior knowledge of the information stored in the ensemble. The goal

of the work [70] was to find optimal time-dependent choices for the write and readout pulses,

such that the resulting cavity responses have minimal temporal overlap in analogy to time-binned

qubits where information is stored in the occupation amplitudes of two well distinguishable time

bins [37, 71].

A typical result of this optimization using the standard method of Lagrange multipliers (first
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Figure 8. (taken from [70]). Preparation of the spin ensemble configurations, |0〉 and |1〉, for a spin density

following a q-Gaussian distribution (3) with q = 1.39 centered around the cavity frequency ωs = ωc and a

full-width at half maximum γq/2π = 9.4 MHz. This form for ρ(ω) was established in our previous studies by a

careful comparison with the experiment [59, 65]. Right column: two holes were burnt into ρ(ω) at frequencies

ωs ±Ω (green arrows in the inset) to suppress decoherence [54, 55] and to make room for a delay section [white

area] between the write [green area] and readout [gray area] sections. First/second row: real [blue/orange] and

imaginary parts [cyan/brown] of the optimized write pulse η
(W )
|0/1〉(t) for state |0/1〉 and of the generic readout

pulse η(R)(t) [black and gray]. Third row: |A(t)|2 for the resulting non-overlapping cavity responses A
(R)
|0〉 (t)

[blue] andA
(R)
|1〉 (t) [orange]. The carrier frequency of all pulses, ωp = ωc = 2π · 2.6915 GHz, and the coupling

strength Ω/2π = 12.5 MHz. The ratio of the powers between the readout and write pulses is 0.068 (0.013) for

the case without (with) hole burning. The amplitudes of all pulses are presented in units of κ/2π = 0.4 MHz.

without a delay section) is depicted in Fig. 8 (left column), where the amplitudes of all optimized

pulses as well as those of the resulting cavity responses are depicted. One can indeed see that

the two different configurations stored in the spin ensemble, |0〉 and |1〉, are retrieved by the

same readout pulse in the form of two well-separated cavity responses. The storage efficiency can

be quantified in terms of the ratio of integrated cavity amplitudes during the readout and write

section, which turns out to be ≈ 40 % for the configurations |0〉 and |1〉 shown in Fig. 8 (left

column). One can then incorporate the hole burning scheme introduced before in the present

analysis, which leads to an increase of the dephasing time from 1/Γ ∼ 75 ns [the case shown

in Fig. 8 (left column)] to microsecond time scales [see Fig. 8 (right column)] for which one

can now meaningfully introduce a delay section in between the write and the readout section.

In Fig. 8 (right column) we show that with parameters taken from recent experiments [55] one

can extend the storage time and thereby the method’s temporal range of control beyond one

micro-second.

With these long coherence times one can now store coherent superpositions of the two spin

configurations, |0/1〉. Those can be created by the corresponding superposition η(W )(t) =

α·η(W )
|0〉 (t)+β ·η(W )

|1〉 (t) of the respective write pulses, and, ideally, the corresponding superposition
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of time-binned cavity responses would be observed under the application of the readout pulse

η(R)(t). As it turns out, however, the cavity response induced by the readout pulse imposes the

constraint, α + β = 1, to retrieve an appropriate superposition of cavity outputs [70]. Together

with the normalization |α|2+|β|2 = 1 this implies that for the amplitudes αx = 1−x±i
√
x(1− x)

and βx = x ∓ i
√
x(1− x) with x ∈ [0, 1] the desired cavity response will be obtained. As a

result, the proposed storage sequence does not only work for the two basis states |0/1〉, but,

indeed for a one-dimensional set of coherent superpositions, such as for a rebit [71, 72]. Quite

remarkably, when being only interested in reading out the parameters α and β (and not in further

processing the resulting cavity response) one is not restricted by the above rebit parametrization,

but has the full qubit parameter space at one’s disposal [70].

In summary, we present here an efficient optimization technique applicable to different experi-

mental realizations based on an inhomogeneously broadened spin ensemble coupled to a single

cavity mode. Generalizing this scheme to the full quantum-mechanical level is the obvious next

step to make our protocol an essential building block for the development of future optimal con-

trol schemes with the perspective of advancing the storage capabilities for quantum information.

4 Spin-cavity nonlinear dynamics on a chip

In our previous sections many new and exciting physics of the non-Markovian spin-cavity dynamics

was obtained in the framework of a linear integral Volterra equation for the cavity amplitude. This

approach has a restricted validity being applicable only in the limit of weak driving powers, when

the Holstein-Primakoff-approximation is justified [64], so that the spin motion develops in the

vicinity of the south pole of the Bloch sphere. Arbitrary spin deviations are definitely a new degree

of freedom, which considerably enrich the resulting dynamics and can give rise to new dynamical

behaviours potentially interesting for novel types of coherent-control schemes. Therefore, a next

logical line of research consists in the generalization of our theory such that it will allow us to

describe the large spin deviations from its initial unexcited state. In this section we briefly present

the results on bistability and nonlinear dynamics of a spin ensemble strongly coupled to a single

mode cavity driven by external pulses [61]. The resulting dynamics is described in the framework

of Maxwell-Bloch equations and the effect of inhomogeneous broadening of the spin ensemble is

treated as in the previous sections. We also discuss the effect of a critical slowing down of the

cavity population which lasts for a very long time, a timescale many orders of magnitude longer

than the longest time scale associated with the system.
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4.1 Theoretical model

In general, to describe the temporal spin-cavity dynamics in the presence of inhomogeneous

broadening, allowing for large spin deviations from their unexcited states, one can begin with

a quantum master equation for the spin-cavity density matrix of the following form, dρ/dt =

−i [H, ρ ] + LD(ρ). Here H stands for the Tavis-Cummings Hamiltonian (1) and LD(ρ) is the

Lindblad operator which accounts for the system-environment interaction and can be represented

in the following form,

LD(ρ)=κ (2aρa†− a†a ρ− ρ a†a) + γh

N∑
j=1

(2σ−j ρ σ
+
j − σ+

j σ
−
j ρ− ρ σ+

j σ
−
j ) + γp

N∑
j=1

(σzjρ σ
z
j − ρ ).

Here we explicitly distinguish between two different time scales, T2 = 1/γ⊥ and T1 = 1/γ‖

(where γ⊥ = γh + 2γp and γ‖ = 2γh), associated with nonradiative dephasing of the spins (fast

process) and their spontaneous decay (slow process), respectively. Using this formalism, one

can derive a first-order ordinary differential equation (ODE) for the expectation value of any

operator Ô, which is given by, d〈Ô〉/dt = Trace
(
−i[ Ô,H ]ρ + ÔLD(ρ)

)
. However, a set of

equations for the spin and cavity expectation values, 〈a〉, 〈σ−j 〉 and 〈σzj 〉, will not form a closed

set of ODEs because it will contain the second-order expectation values like 〈σ−j a†〉 etc. Thus, it

would be necessary to derive equations for 〈σ−j a†〉, which will, in turn, depend on the third-order

correlations of spin and cavity operators and so on. In other words, to solve this problem exactly

one should solve in general an infinite hierarchy of equations. To close the resulting system

of ODEs the remaining higher-order correlations will be approximated by means of the lower-

order ones using the so-called generalized cumulant expansion method [73–75]. The problem is

drastically simplified if a complete factorization between cavity photons and the spin ensemble

is assumed, i.e. when the expressions like 〈σ−j a†〉 are assumed to factorize into 〈σ−j 〉〈a†〉. After

carefully analyzing the correlation properties between cavity photons and the spin ensemble, one

can indeed conclude that this approximation is very well fulfilled for a large spin ensemble driven

by a coherent signal.

Thus, using this mean-field approximation, 〈σ−j a†〉 ≈ 〈σ−j 〉〈a†〉, a set of first order ODEs can be

derived, which is formally equivalent to the well known Maxwell-Bloch equations [76]:

ȧ = −κa+
∑

j
gjσ

−
j + η

σ̇−j = − (γ⊥ + iΘj)σ
−
j + gjσ

z
ja (17)

σ̇zj = −γ‖
(
1 + σzj

)
− 2gj

(
σ−j a

† + σ+
j a
)
,

where from now on all symbols are used for the corresponding expectation values rather than

for the operators. If not specified otherwise, all notations and parameters are the same as in
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Figure 9. (taken from [61]). Steady state bistability transmission measurements through the cavity as a function

of increasing (blue) and decreasing (red) input power Pin. In (a) the transmission measurements are plotted for

the cooperativity value Ccoll ≈ 18 and κ/2π = 1.2 MHz using two subensembles in resonance with the cavity.

(b) The same transmission measurement with Ccoll ≈ 49 and κ/2π = 0.44 MHz. A small bistablity area is visible

where no steady states exist and the system jumps from one steady state to the other. (c) The same measurement

as in (a) with an increased cooperativity of Ccoll ≈ 78 (by using all four NV subensembles in resonance with

the cavity), again with κ/2π = 0.44 MHz. The dashed curves: numerical solutions of Eqs. (18). Dashed lines in

(b): asymptotic solutions in the limit of large and small driving amplitudes η. Two critical values of η, at which

a jump between two stable branches occurs, are characterized by a saddle-node bifurcation. For all three cases

also a sketch of the corresponding potential is depicted that shows the occurrence of either one or two stable

solutions (red and blue symbols) and one unstable solution for (b,c) (green symbol) at a fixed value of η.

the previous sections. The relaxation rates are ordered as κ > γ⊥ � γ‖ = 10−4 Hz, such that

the spin inversion is by far the slowest process. Θj are frequency detunings with respect to

the ensemble central frequency to account for inhomogeneous broadening and numerical values

for gj represent a coupling strength within each subgroup by dividing the q-Gaussian into many

frequency subintervals as it is done in sec. 3.2. Setting the time derivatives to zero, one gets the

following steady state solution,

|a|2 =
η2

κ2

(
1−

∑
j
Cjσ

z
j

)−2

, σzj =−
(

1 +
4g2

j |a|2γ⊥
γ‖(γ2

⊥ + Θ2
j)

)−1

, (18)

where the dimensionless parameter Cj = g2
j/
[
κγ⊥

(
1 + Θ2

j/γ
2
⊥
)]

is the single spin cooperativity.

The collective system cooperativity is given accordingly by Ccoll =
∑

j Cj.

4.2 Amplitude bistability and quench dynamics

First, the steady state bistable behavior is searched for in the experiment [61] by measuring the

transmitted intensities through the cavity defined by |T|2 = Pout/Pin as a function of the input

drive intensity Pin ≈ η2/κ and outgoing intensity Pout ≈ |a|2 κ. The drive power is raised in a

stepwise manner, slow enough to allow the system to reach a steady state for each stimulus Pin.

For weak driving pulses the intra-cavity intensity is not sufficient to saturate the spin ensemble

(σzj ∼ −1) and is thus given by |a|2 ≈ η2

κ2
1

(1+Ccoll)2
. As the power level increases, the cavity field
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Figure 10. (taken from [61]). Quench dynamics for high cooperativity Ccoll ≈ 78. In (a) the intra-cavity

intensity |T|2/|Tmax|2 is plotted vs. time for different drive intensities, where the time to reach a steady state

strongly depends on the input intensity. For drive intensities larger than a critical drive value Pcrit (defined as the

power where the system undergoes the phase transition from the lower to the upper branch, see Fig. 9) the spin

ensemble remains saturated and a system sets into a state lying on the upper branch, whereas in the opposite

case it starts to collectively decay into a state lying on the lower branch. Close to the critical drive Pcrit the

transient dynamics is extremely enchanced and approaches 4 · 104 s. The dashed curves are numerical solutions

of Eqs. (17) (see [61]). In (b) the phase diagram, d|T|2/dt vs. |T|2, is shown for the decay towards a steady

state (black dotted line) for different input drivings Pin. For driving powers close to Pcrit the derivative d|T|2/dt
approaches the values close to zero resulting in very slow transient dynamics. The switching time between the

upper and lower branch is displayed in (c) as a function of the distance to Pcrit. Close to the critical drive the

switching time diverges, and the time to reach a steady state becomes arbitrarily long. The solid red line is a

fitting function of the form tswitch ∼ |Pin − Pcrit|−α (with α = 1.2).

bleaches the spins (σzj ≈ σ−j ∼ 0) such that the Rabi-splitting vanishes and the spin system

decouples from the cavity. The intra-cavity intensity |a|2 ≈ η2

κ2
is that of an empty cavity from

which spins are completely decoupled. We identify the power level for which the transition

between both cases occurs at the critical drive Pcrit.

This nonlinear saturation behavior is a necessary precursor for the observation of amplitude

bistability. However, whether or not it is observable in the experiment is determined by the

system’s collective cooperativity. This is apparent from Eq. (18), where larger cooperativity

values result in stronger nonlinearity and thus in a larger phase seperation. In Fig. 9 we present

steady state bistability measurements for three cooperativity values Ccoll = 18, 49, 78. The

lowest value Ccoll = 18 does not show bistability [Fig. 9(a)], but increasing the cooperativity up

to Ccoll = 49 leads to the onset of bistable behavior [Fig. 9(b)]. With further increase of the

cooperativity, a very pronounced amplitude bistability within a 2dB range shows up [see Fig. 9(c)

for Ccoll ≈ 78]. This steady state bistability behavior is well reproduced by numerical calculations

when the effect of inhomogeneous broadening is taken into account [dashed lines in Fig. 9(a-c)].

Having obtained such a clear evidence of the amplitude bistability, one can focus next on the

temporal behavior of the hybrid system exploring the quench dynamics. Here the system is
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prepared in a certain initial steady state in which the spin ensemble is completely saturated and

constantly driven with Pin � Pcrit. Then, the driving power is abruptly switched to a lower

driving level and the system transmission is monitored. The measurements are repeated several

times, by preparing the system always in the same initial state and switching driving powers to

different lower values. When the system is driven close to the bifurcation point (Pin ≈ Pcrit) the

timescales needed to settle in a stationary state become as long as 4 · 104 s (see Fig. 10). Such

a behavior is referred to as critical slowing down [77].

This dynamical behavior can also be described in the framework of Maxwell-Bloch equations

(17), which predict that the system features two fixed points at which a saddle-node bifurication

occurs. A branch with unstable solutions connects two stable branches, one being weakly driven,

with de-excited and ordered spins, and the other one being strongly driven, with unordered and

saturated spins [see Fig. 9(c)]. Starting from the strongly driven upper branch with a large intra-

cavity intensity, the saturated spin system (σzj ≈ σ−j ∼ 0) is entirely decoupled from the cavity.

This prohibits collective decay into the cavity leaving the extremely small longitudinal relaxation

rate γ‖ as the dominant decay channel. In the opposite limit of drive intensities much smaller

than the critical value, the spin system starts to collectively decay through the cavity early on

with a rate much larger than γ‖ and no critical slowing down is observed.

At the critical driving intensity, the saturation due to the drive and decay of the spin system are

equal and opposite in effect allowing an everlasting decay to occur without the system reaching

its fixed point. If however, the drive intensity is slightly smaller than the critical drive, one

observes a critical slowing down of the decay, but eventually the collective decay in the system

prevails leading to a buildup of spin correlations, and, eventually, to a faster decay of the spins

as well as the cavity population. This behavior is demonstrated in Fig. 10(a-c) where close to a

critical drive the system evolves towards the upper unstable fixed point, with a time derivative

that can approach zero arbitrarily closely [inset in Fig. 10(b)]. Small deviations from the critical

drive lead to a speed up in decay until the system relaxes to a stable steady state. The time

it takes to go from the upper to the lower branch diverges close to the critical drive according

to tswitch ∼ |Pin − Pcrit|−α with α ∼ 1.2, as shown in Fig. 10(c). This algebraic divergence

is characteristic for nonlinear systems exhibiting saddle-node bifurications [78]. One can also

find here a very good agreement between measurements and numerical numerical solutions of

Eqs. (17) [see Fig. 10(a)].

In conclusion, we have shown how a hybrid system composed of a superconducting resonator

coupled to a spin ensemble in diamond can be used to explore amplitude bistability in new

regimes of cQED, with unusual decay rates where the spin life-time is much longer than other

decay constants in the system. We have demonstrated a critical slowing down of the cavity

population which is of the order of ten hours, a timescale several orders of magnitude longer
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ωa

Figure 11. Two-level system (TLS) with transition fre-

quency ωa inside an open cavity.

than that observed so far for this effect. In our future studies we intend to go beyond the

semiclassical thermodynamic limit governed by the Maxwell-Bloch equations and investigate the

mesoscopic case with a moderate number of spins. This regime is very interesting from the

technological perspective and is realized e.g. in metamaterials [79, 80] based on an ensemble of

superconducting qubits for which the role of quantum correlations becomes stronger as compared

to the semiclassical case. From the fundamental point of view it is very important to explore a

non-trivial route from a few body- to many-body physics on a chip.

5 Non-Markovian quantum dynamics of an emitter inside an open

multimode cavity

Up until now, we discussed many interesting aspects of the spin-cavity dynamics as well as their

possible applications in a system of many spins strongly coupled to a single-mode cavity. In

search of new physical realizations interesting in the context of hybrid quantum technology, we

next investigate the reverse situation, i.e., a single-mode cavity strongly coupled to many two-level

emitters. Namely, we overview in this section some of the main features of the non-Markovian

quantum dynamics of an emitter inside an open multimode cavity, focusing on the case where

the emitter is resonant with high-frequency cavity modes (see Fig. 11). Based on a Green’s

function technique suited for open photonic structures, we explore the route from spontaneous

decay to complex multimode dynamics in cQED [65]. We also discuss under which conditions

a single emitter-cavity system, which is initially in the weak coupling regime, can be driven into

the strong coupling regime via the quantum feedback mechanism in a cQED system based on

a half cavity set-up coupled to a structured continuum (the research on this project was carried

out in close collaboration with the group of Prof. Andreas Knorr from TU Berlin [81]).

5.1 Theoretical model

The system under study is a cavity QED setup consisting of a two-level system (TLS) with

transition frequency ωa placed inside a multimode cavity. The method presented here is valid for

an arbitrarily complex open cavity geometry but for the sake of transparency we discuss here a

Fabry-Pérot cavity formed by two highly reflecting mirrors, see Fig. 11. To describe the excitation

dynamics of the TLS one can start with the Hamiltonian written in terms of the modes-of-the-
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universe approach [82], which makes no distinction between the cavity and its environment,

H=(~ωa/2) · σz+
∫
dω~ωa†(ω) a(ω)+~

√
ξ/π ·

∫
dω[g(ω, r) a(ω)σ++g?(ω, r) a†(ω)σ−].

(19)

Here a†(ω) and a(ω) are standard creation and annihilation operators of a photon and σ±,

σz are the Pauli operators associated with the TLS. The interaction part of H is written in

the electric dipole and rotating-wave approximation, where g(ω, r) are the coupling amplitudes

with the dimension of frequency, and ξ stands for the dimensionless coupling strength propor-

tional to the dipole moment squared. Due to the rotating wave approximation, non-resonant

terms (∝ aλσ
−, a†λσ

+) are absent in this Hamiltonian, such that the number of excitations

is conserved. We can thus make the following ansatz for the time evolution of the system,

|Ψ(t)〉 = c(t)e−iωat/2|u〉|0〉 +
∫
dωcω(t)|l〉|1ω〉e−i(ω−ωa/2)t, where the ket-vectors |u〉 and |l〉

stand for the atom in the upper and lower states, respectively, and the ket-vectors |0〉 and |1ω〉
represent the vacuum state and a single photon with the frequency ω. Solving the Schrödinger

equation with this ansatz, H|Ψ(t)〉 = i~∂t|Ψ(t)〉, we arrive at the following Volterra equation

for the excited state amplitude of the TLS, c(t),

ċ(t) = − ξ
π

∫ t

0

dt′
∫ ∞

0

dωF (ω)e−i(ω−ωa)(t−t′)c(t′), (20)

where F (ω) = ρ(ra, ω) · |g(ω)|2 is the spectral function, featuring the local density of photonic

states (LDOPS), ρ(ra, ω), evaluated at the emitter position r = ra and g(ω) determines the

coupling strength to the emitter where a high-frequency cutoff function is also included (see [65]

for details). It is important to note that Eq. (20) written for the excited state amplitude c(t)

with LDOPS F (ω) is formally equivalent to the Volterra equation (4) formulated for the cavity

amplitude A(t) with the spectral spin density ρ(ω), apart from dissipative rates which do not

explicitly enter in the former case. Therefore, the methods introduced in sec. 2.1 for solving

Eq. (4) can be directly applied here to solve Eq. (20).

To make contact with the physics of an open cavity, one can evaluate the LDOPS for a one-

dimensional cavity of length L bounded at x = 0, L by two thin semi-transparent mirrors modelled

by dielectric slabs of width d � L with refractivity index n (see Fig. 11). For such an open

system the LDOPS is given exactly by the imaginary part of the Green’s function [83], ρ(xa, ω) =

−2ω · ImG+(xa, xa, ω)/π, where the retarded Green’s function (labeled by +) satisfies the

Helmholtz equation (∂2
x + n2ω2)G+(x, xa, ω) = −δ(x− xa) for all x ∈ R with purely outgoing,

so-called “constant-flux” boundary conditions. The expression for ρ(xa, ω) can be analytically

calculated for this geometry [65]. Note that, due to the openness of the cavity, the LDOPS

is a continuous function, corresponding to a continuum of extended modes which are notably

different from the discrete set of cavity modes.
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Figure 12. (taken from [65]). Route from single- to multimode coupling regime for different coupling strengths

ξ. Upper row: Dimensionless kernel function U(ω). Lower row: Dimensionless nonlinear Lamb shift δ(ω) for the

same ω-interval as above (note the different zooms for the three columns). Left column: weak coupling regime for

ξ = 4 · 10−6 with a single peak in U(ω) (Purcell modified spontaneous decay). Middle column: strong coupling

regime for ξ = 2.5 · 10−3 with a well-resolved Rabi splitting in U(ω) (regime of damped Rabi oscillations). Right

column: Multimode strong coupling regime for ξ = 1.44 with a multi-peak structure in U(ω) consisting of almost

equidistant peaks (regime of revivals). Filled circles label resonance values ωr of the kernel U(ω) occurring at

the intersections between the Lamb shift δ(ω) and the dashed line (ω − ωa)/ξ. At empty circles (not shown in

right column) such intersections are non-resonant and do not lead to a corresponding peak in U(ω) (see text).

The transition frequency ωa ≈ 19π of the TLS coincides with the 10th resonance of the spectral function F (ω).

The reflectivity parameter η = 0.1 is such that the mirror reflectivity |r(ωa)|2 = 0.9. Frequency ω is measured

here in units of the inverse half the cavity round trip time.
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Figure 13. (taken from [65]). Temporal evolution of the excited state probability |c(t)|2 of the TLS for the three

cases shown in Fig. 12. Time t is measured here in units of half the cavity round trip time. Left panel: Weak

coupling regime (ξ = 4 · 10−6) featuring spontaneous decay (also shown in log-lin scale in the inset). Middle

panel: Strong coupling regime (ξ = 2.5 · 10−3) with damped Rabi oscillations. Right panel: Multi-mode strong

coupling regime (ξ = 1.44) featuring pulsed revivals at multiple integers of half the cavity round trip time.
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5.2 Route from spontaneous decay to complex multimode dynamics

One can now proceed to solve Eq. (20) for a single excitation, initially stored in the TLS, c(0) = 1.

Applying the Laplace transformation in the same fashion as in sec. 2.1.2, the following expression

for the amplitude c(t) can be derived

c(t) =
ξ

π
eiωat

∫ ∞
0

dω U(ω) e−iωt, (21)

with the kernel function U(ω) and the nonlinear Lamb shift δ(ω) given by Eqs. (12,13) upon

replacing ρ(ω), Ω2 and ωc by, respectively, F (ω), ξ, and ωa, and setting two dissipative rates to

zero.

Obviously, the dominant frequency components entering the dynamics of c(t) are those which

are resonant in the kernel function U(ω). A necessary condition for such resonances to occur is

that the first term in the denominator of U(ω) vanishes,

(ωr − ωa)/ξ = δ(ωr) . (22)

This resonance condition is satisfied at the frequencies ωr, determined by the intersection of the

nonlinear Lamb shift δ(ω) and a straight line (ω − ωa)/ξ. Since, according to Eq. (13), every

resonance in F (ω) produces a dip followed by a peak in the Lamb shift, there may be several such

intersections, corresponding to multiple solutions of Eq. (22). The corresponding resonances

in the kernel U(ω) can, however, be suppressed, whenever the spectral function F (ω) has a

maximum at the same resonance frequency. This is the case if the kernel U(ω) = 1/[ξ2F (ω)]

goes through a minimum at ω = ωr.

Based on these observations, one can now investigate the crossover from weak to strong coupling

upon variation of the coupling strength ξ; all other parameters, like the spectral function F (ω)

and the mirror’s reflectivity factor η will be left unchanged. At very weak coupling, ξ = 10−4

(left panel of Fig. 12), the straight line in Eq. (22) is very steep and thus leads just to a single

intersection, corresponding to a single resonance at ωr ≈ ωa. All quantities in U(ω) can thus be

evaluated at ωa to very good accuracy and the kernel function reduces to a Lorentzian centered

around the slightly shifted frequency ωa + ξδ(ωa) with the width ξF (ωa). By extending the

integration limit in Eq. (21) to −∞, the Purcell modified exponential decay of the TLS inversion

[3] is reproduced, in good agreement with a numerical solution of the Volterra equation, Eq. (21)

(left panel in Fig. 13). This is the overdamped dynamics of the TLS in the weak coupling limit

of cQED.

As ξ increases to ξ = 2.5 · 10−3 we enter the strong coupling regime, as indicated by the straight

line now being flat enough to intersect the nonlinear Lamb shift at three points (middle panel

of Fig. 12). Note that these three intersections give rise to only two resonances ωr in the kernel
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U(ω) since the middle frequency is very close to the resonance of F (ω) (see discussion above).

As a consequence, the kernel function U(ω) has a double peak structure that is characteristic

of the single-mode vacuum Rabi splitting [9]. This energy splitting introduces a new frequency

scale, the Rabi frequency, which is easily estimated from the resonance condition (22) to be√
2ωaξ . The inverse of the peak width provides the time scale at which the Rabi oscillations

decay, as confirmed by independent numerical solutions of Eq. (21) (middle panel of Fig. 13).

With further increase of the coupling strength to ξ = 1.44, the straight line starts to intersect

neighboring resonances of δ(ω), involving an increasing number of cavity modes. Thus, within

the multimode strong coupling regime it is possible to couple to many cavity modes, including

those that reside far away from the transition frequency ωa (right panel of Fig. 12). Note that,

similar to the situation above, only every second intersection with the Lamb shift produces a

resonance in the kernel U(ω) which, correspondingly, takes on a multi-peaked profile. If, as

in our case, these peaks also have an equidistant spacing to each other, then the interference

between these resonant modes produces a train of pulses in the probability of the excited state

|c(t)|2, corresponding to pulsed revivals of the TLS inversion (right panel of Fig. 13). With the

revival time being equal to half the cavity round trip time, the straightforward explanation of

this phenomenon is the repetitive emission and subsequent reabsorption of radiation by the TLS,

when it is back-reflected by the cavity boundaries. As such, this effect relies on the fact that

the phases acquired from all possible paths starting from and returning to the position of the

TLS differ only by integer multiples of 2π, a condition which strongly depends on the position

of the TLS in the cavity. Indeed, if we move the TLS away from the cavity center, a much more

irregular type of dynamics emerges (not shown).

In this section we showed that the conventionally observed regimes of spontaneous decay or Rabi

oscillations at the very strong emitter-cavity coupling are followed by periodic quantum revivals

of the atomic inversion on a time scale associated with the cavity round-trip time. In this new

multimode strong-coupling regime, the emitter sends out a pulse during the de-excitation process

and gets re-excited when this pulse returns after back-reflection from the ends of the cavity. We

show that the crucial parameter to capture the crossovers between these regimes is the nonlinear

Lamb shift, accounted for exactly in our formalism.

5.3 Quantum feedback enhanced Rabi oscillations

A coherent energy exchange between an atom and a cavity requires that an atom-cavity coupling

exceeds any photon loss and radiative decay processes. Therefore, besides technological progress

to increase the quality factor of the cavities, a promising alternative for the stabilization of desired

quantum regimes is quantum feedback achieved either via the external control e.g. by continuous

measurements [84], or via various delayed feedback control schemes [85, 86]. In this section we
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Figure 14. (taken from [81]). Implementation of an

intrinsic quantum feedback mechanism via a quasicon-

tinuum, realized by a photonic crystal waveguide with

length L, which is supposed to be considerably larger

than the cavity length L′. The waveguide is a half cavity

and allows to exchange cavity photons with waveguide

photons due to the photon leakage G(k). The photons

inside the cavity interact with a single emitter (coupling

strength Ω).
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curve) and long time solution determined by the residuum

contribution only (black curve) for an initially excited

TLS ce(0) = 1 and κ/Ω = 2, where κ = πG2
0/(2c0).

After several τ , the analytical long time solution and the

numerics coincide.

present an interesting strategy to stabilize single-emitter cQED via a quantum feedback from an

external structured continuum. Specifically, we consider the photon leakage mechanism shaped

by an external mirror and discuss how the initial weak atom-cavity coupling can be driven into

the strong coupling regime. For this purpose the conditions for this stabilization phenomenon are

specified, among which the phase relation between the cavity mode and the delay time imposed by

the external mirror plays a decisive role [81]. The system under study consists of a microcavity

system of length L′ with a two-level emitter coupled to a single cavity mode (see Fig. 14).

Furthermore, the cavity exhibits photon loss due to its coupling to external modes. An external

mirror, placed in a distance of L � L′, introduces a boundary condition to the external mode

structure and causes a feedback of lost cavity photons into the cavity. This kind of quantum

self-feedback can be realized via a shaped mode continuum in a photonic waveguide. Due to the

finite cavity-mirror distance L and the quasicontinuous mode structure of the semiinfinite lead,

a delay mechanism is introduced into the system at τ = 2L/c0 with c0 being the speed of light

in vacuum. To describe the corresponding physics one begins with the following Hamiltonian

within the rotating-wave and dipole approximation:

H/~ = −Ω
(
σ−a† + σ+a

)
−
∫

dkG(k, t) a†dk +G∗(k, t) d†ka, (23)

where a rotating frame is chosen in correspondence to the free energy contribution of the Hamil-

tonian. The emitter is described via the Pauli matrices with σ± being the raising and lowering

operators of the two level system, respectively. In the following, the atomic energy is assumed

to be in resonance with the single cavity mode. A photon annihilation (creation) in the cavity is

described with the bosonic operator a†(a) and Ω is the coupling between the two-level system and
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the cavity mode. The cavity photons interact with the external modes d†k in front of the mirror

via the tunnel Hamiltonian coupling elements G(k, t) = G0 sin(kL) exp[i(ω0 − ωk)t], which due

to the interference with the back-reflected signal from the mirror depend both on time t and on

the wavenumber k [81]. Here G0 stands for the bare tunnel coupling strength and ω0 and ωk

are the frequencies of a single cavity mode and half-cavity modes, respectively. Note that this

specific form of G(k, t) determines the nature of the feedback on the cavity.

If no other loss channels or pump mechanism are introduced, the system dynamics described by

the Hamiltonian (23) can be solved in the Schrödinger picture, so that in the single photon limit,

the total wave function reads:

|Ψ(t)〉 = ce(t)|e, 0, {0}〉+ cg(t)|g, 1, {0}〉+

∫
dk cg,k(t)|g, 0, {k}〉, (24)

where |e, 0, {0}〉 denotes the excited state of the TLS with the cavity and the waveguide being in

the vacuum state, |g, 1, {0}〉 stands for a single photon residing in the cavity and the TLS as well

as the radiation field in the waveguide being in the ground state. Finally, |g, 0, {k}〉 describes

the ground state of the TLS with exactly one photon in the waveguide of mode k.

Writing the Schrödinger equation, one can derive a set of linear ODEs with respect to the

amplitudes ce(t), cg(t) and cg,k(t) and use the simplest initial conditions assuming that at t0 = 0

the TLS is in the excited state, ce(t0) = 1, and there are neither photons inside the cavity,

cg(t0) = 0, nor in the external region, cg,k(t0) = 0. To introduce a delay time corresponding

to τ = 2L/c0 = 2π/Ω, a mirror resonator distance L = πc0/Ω is chosen. The resulting

set of ODEs for the amplitudes can also be solved using the Laplace transform method (see

sec. 2.1.2). Importantly, a slow asymptotic behavior of the coupled system is directly related

to the singularities in the contour integral of the Laplace transformed function, which are found

by setting its denominator to zero. As it turns out, the corresponding singularity condition

can be matched if, for instance, Ωτ = 2πm and, at the same time, the cavity frequency is

chosen such that ω0τ = 2πl, where l,m are integer numbers. As a result one ends up with a

purely coherent asymptotic solution characterized by a minimum of dephasing and a maximum

amplitude, corresponding to the fact that the pole does not contain any decaying term.

In Fig. 15, the numerical solution and the analytical asymptotic solution are plotted for τ = 2π/Ω

(i.e. when m = 1) up to several τ . The agreement is excellent with the long time solution

accurately recovering the amplitude and the oscillation frequency of the exact numerical solution.

It turns out that the effect of stabilized Rabi oscillations in the long time limit depends strongly

on the chosen time delay τ , which has to be chosen such to satisfy aforementioned conditions

that lead to asymptotically undamped Rabi oscillations. Furthermore, the factor exp(iω0τ) plays

a crucial role to decide whether quantum feedback leads to a stabilized Rabi oscillation or to

a damped feedback situation. However, the effect depends only quantitatively (rather than
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qualitatively) on the cavity loss κ and coupling strength Ω, besides the obvious restriction that

both of them are unequal to zero. To gain an intuitive explanation of the effect of recovered

Rabi oscillations in the weak coupling limit, one can visualize the resulting cavity dynamics in

the framework of the photon-path representation using the von Neumann expansion [81]. With

this expansion, one can represent the dynamics as a series of single scattering events by multiple

application of the scattering matrix, which swaps the excitation from ce to cg and includes the

cavity loss and the gain from the feedback. In other words, the strong coupling feature is produced

by a destructive interference effect of the photon paths at the point of tunneling between cavity

and waveguide.

In summary, in this chapter we address a very important question in the context of possible

cQED applications, which is how to reach and stabilize the regime of the quantum-feedback-

induced Rabi oscillations. The results obtained show that the stabilization of Rabi oscillations

for a system being initially in the weak-coupling regime (before the feedback modifies the system

dynamics) depends strongly on the chosen time delay. The latter has to be chosen such as to

satisfy certain conditions between the system parameters that lead to asymptotically undamped

Rabi oscillations.

6 Summary of the attached articles

In [58] I developed a theoretical framework to describe the collective non-Markovian spin-cavity

dynamics of a system consisting of a large spin ensemble coupled with a single-mode cavity via

magnetic or electric dipole interaction. For that purpose a Volterra integral equation was set

up for the cavity amplitude that contains a memory kernel with information about all previous

events in the system. My numerical calculations showed excellent agreement with the experimen-

tal results [59], and underline that a precise knowledge of the inhomogeneous spin distribution

is crucial for the understanding of time domain measurements. Based on this theory it was

possible to predict, on the example of one particular experimental realization [59], how the deco-

herence induced by the inhomogeneous distribution of the constituents of a large ensemble can

be suppressed in the strong-coupling regime - a phenomenon known as “cavity protection”. To

demonstrate the potential of this effect for coherent control schemes, we showed how appropri-

ately chosen microwave pulses can dramatically increase the amplitude of coherent oscillations

between the cavity and the spin ensemble. Furthermore, my theoretical analysis disclosed a non-

trivial crossover between Markovian and non-Markovian dynamics which is realized by varying

the collective coupling strength.

In two other studies [54, 55], we could recently find an alternative way to overcome the detri-

mental influence of inhomogeneous broadening: In particular, I theoretically predicted that the
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decoherence induced by the spin broadening can be strongly suppressed by burning two nar-

row spectral holes in the spin spectral density at judiciously chosen frequencies [54]. Using this

procedure we found an increase of the coherence time by more than an order of magnitude as

compared to the case without hole burning - a scenario that has been confirmed in a recent

experiment [55].

In [60] I generalized our hole-burning concept to more sophisticated profiles of an engineered

spin spectral density. Specifically, when the ensembles feature a comb-shape structure to give

rise to repetitive photon pulse revivals, we demonstrated how the burning of narrow holes in this

atomic frequency comb leads to a dramatic prolongation of the revival dynamics. I found that

the positions of the holes are generally incommensurate with the positions of the peaks in the

frequency comb - a result that follows directly from our theory for the multimode strong coupling

regime.

In [70], we developed an efficient optimal control scheme and demonstrated the viability of our

approach in terms of explicit storage and readout sequences for a spin ensemble strongly coupled

to a single-mode cavity. Our technique based on Volterra equations relies solely on very weak

control pulses, and as consequence, diminishes the influence of noise caused by writing and

reading pulses in contrast to established echo techniques which require additional high-intensity

control fields. The applicability of our approach was also demonstrated in conjunction with the

above-mentioned spectral hole-burning technique [54, 55, 60] that allows us to reach storage

times going far beyond the dephasing time of the inhomogeneously broadened ensemble.

In [61] I went beyond the Volterra equation approach and developed a theoretical framework

which is capable of capturing the essential features of nonlinear dynamics and amplitude bista-

bility observed in the experiment dealing with an inhomogeneously broadened ensemble strongly

coupled to a single mode cavity driven by external pulses [61]. We also unraveled a very unusual

effect of a critical slowing down of the cavity population which exceeds the longest time scale

associated with the system by many orders of magnitude.

In another study [65] based on a Green’s function technique suited for open photonic structures,

we analyzed the non-Markovian quantum dynamics of an emitter inside an open multimode cavity,

focusing on the case where the emitter is resonant with high-frequency cavity modes. Solving

the Volterra equation for the temporal decay through Laplace transform allowed me to obtain

the decay dynamics together with a corresponding graphical analysis which provides an intuitive

understanding of the different regimes observed. On top of the familiar exponential decay and

damped Rabi oscillations in the weak and strong coupling regime, respectively, I identified, for

very strong coupling, a regime where the emitter couples to multiple modes, leading to pulsed

revivals of its initial excitation.
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In [81] we found an approach to stabilize single-emitter cQED via a quantum feedback mecha-

nism induced by an external mirror. Specifically, we analyzed under which conditions a system

consisting of an emitter weakly coupled to a cavity, which, in turn, is coupled to a structured

continuum, can be driven into the strong coupling regime. Furthermore, we determined the the-

oretical limit for a feedback effect on the single excitation level and extended our investigation

from the weak- to the strong coupling regime. By expanding our solution with the von Neumann

series, we could demonstrate that the effect relies on a destructive interference effect of incoming

and outgoing photon wave packages and illustrated this in a photon-path representation picture.

7 Outlook

Cavity QED is a rapidly developing field which is of central importance both from a practi-

cal, application-minded interest, and from a fundamental point of view. The envisioned future

technologies deal with secure communication and quantum sensing, with the implementation of

elementary operations for quantum information processing as well as for its coherent storage and

retrieval. Another promising applications will be based on various quantum architectures, which

enable on-chip quantum simulations necessary for the understanding of the dynamics in open

quantum many-body systems.

The experimental success achieved in various physical realizations has reached an important

stage where one can now in principle engineer composite systems to exploit the best properties

of their individual constituents. Such a hybridization between different elements leads to new

device functionalities, which otherwise would not be possible to reach. However, there are still

many practical limitations caused by decoherence, which is known to be the major bottleneck for

the processing of quantum information in hybrid quantum technology. Furthermore, a general

theoretical framework covering all aspects of many-body quantum dynamics in these systems is

still missing.

Specifically, the presence of a sizeable number of constituents (spins, qubits etc) within an

ensemble coupled to a cavity permits the introduction of the semiclassical approach so that the

problem is formally reduced to the Maxwell-Bloch equations for the cavity and spin amplitudes.

The opposite limit with a few spins (of the order of fifteen) is computationally tractable by

numerically solving the Lindblad master equation. However, adequate theoretical tools applicable

in a mesoscopic limit are not well-established, which is realized in various quantum metamaterials

such as those based on an ensemble of superconducting qubits coupled to a microwave cavity. We

believe that in this case the density-matrix renormalization group method (or, even more general,

Tensor Network methods) can be appropriately adjusted, which has turned into the numerical

method of choice for studying the physics in strongly correlated quantum lattice systems.
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A whole range of new and previously unexplored physics is expected to be uncovered in different

cavity QED setups upon variation of the external drive and of the collective coupling strength. In

particular, we anticipate that very intriguing dynamical regimes and bifurcation scenarios will be

found as a result of the complex interplay between several ingredients characteristic for quantum

non-Hermitian many-body system such as entanglement, “superradiance”, and the Dicke-model

quantum phase transitions.
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[7] P. V. Ruijgrok, R. Wüest, A. A. Rebane, A. Renn, and V. Sandoghdar, “Spontaneous emission of a

nanoscopic emitter in a strongly scattering disordered medium,” Opt. Express, vol. 18, pp. 6360–6365,

Mar 2010.

[8] X.-W. Chen, M. Agio, and V. Sandoghdar, “Metallodielectric hybrid antennas for ultrastrong enhancement

of spontaneous emission,” Phys. Rev. Lett., vol. 108, p. 233001, Jun 2012.

[9] E. T. Jaynes and F. W. Cummings, “Comparison of quantum and semiclassical radiation theories with

application to the beam maser,” Proceedings of the IEEE, vol. 51, pp. 89–109, Jan 1963.

[10] J. H. Eberly, N. B. Narozhny, and J. J. Sanchez-Mondragon, “Periodic spontaneous collapse and revival in

a simple quantum model,” Phys. Rev. Lett., vol. 44, pp. 1323–1326, May 1980.

[11] S. Haroche and J.-M. Raimond, Exploring the Quantum: Atoms, Cavities, and Photons. Oxford University

Press, 2006.

[12] J. D. Thompson, T. G. Tiecke, N. P. de Leon, J. Feist, A. V. Akimov, M. Gullans, A. S. Zibrov, V. Vuletić,
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We study the dynamics of a spin ensemble strongly coupled to a single-mode resonator driven by external pulses.
When the mean frequency of the spin ensemble is in resonance with the cavity mode, damped Rabi oscillations are
found between the spin ensemble and the cavity mode which we describe very accurately, including the dephasing
effect of the inhomogeneous spin broadening. We demonstrate that a precise knowledge of this broadening is
crucial both for a qualitative and a quantitative understanding of the temporal spin-cavity dynamics. On this basis
we show that coherent oscillations between the spin ensemble and the cavity can be enhanced by a few orders
of magnitude, when driving the system with pulses that match special resonance conditions. Our theoretical
approach is tested successfully with an experiment based on an ensemble of negatively charged nitrogen-vacancy
centers in diamond strongly coupled to a superconducting coplanar single-mode waveguide resonator.
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I. INTRODUCTION

Over the past decade various setups in cavity quantum
electrodynamics (QED) have been studied in terms of their
potential for future technologies involving the storage and
processing of quantum information. Among different hybrid
quantum systems [1], the ones based on spin, atomic or even
molecular ensembles coupled to superconducting microwave
cavities have recently attracted much attention [2–10] (see
Fig. 1). In such systems the spin or atomic ensemble plays the
role of a quantum memory, to which the quantum information
is coherently stored and retrieved from at some later time.
The cavity, in turn, serves as a quantum bus for the in- and
output of information as well as for the coupling between
several constituents of such hybrid quantum systems (see,
e.g., [5]). One of the necessary conditions for the coherent
transfer of quantum information between an ensemble and
a cavity is the strong coupling between them. Fortunately,
various spin ensembles, as, for instance, negatively charged
nitrogen-vacancy (NV) defects in diamond [2–6], rare-earth
spin ensembles [7], clouds of ultracold atoms [9,11] or
magnons in yttrium iron garnet with or without doping [12,13],
may satisfy this requirement when being collectively coupled
to [14]. We also note that in recent proposals the direct coupling
of a qubit to such spin ensembles has been suggested without
any cavity being involved [15,16].

Here we study the dynamics of a superconducting cavity
strongly coupled to an ensemble of negatively charged NV
centers. Each individual NV center can possess a sufficiently
long coherence time [17] needed for the coherent transfer
of quantum information. However, since the local magnetic
dipole-dipole couplings of NV centers constituting the ensem-
ble to the bath of magnetic impurities (such as nitrogen atoms
not converted into NV centers) slightly differ from each other,
the NV electron spin resonance line of a large ensemble is
inhomogeneously broadened [18]. This line broadening acts

*dmitry.krimer@gmail.com

as the main source of decoherence, and constitutes a significant
drawback of this solid-state spin ensemble leading to a drastic
decrease of its coherence time. Several approaches including
echo-type refocusing techniques [19,20] have meanwhile
been suggested to overcome this limitation. Recent stationary
transmission studies demonstrate that the decoherence can be
strongly suppressed altogether [21,22] when the spin density
has a spectral distribution with tails that decay sufficiently
fast [3,21,22]. In this paper we report on a detailed time-
dependent study for exactly such a case and demonstrate how
the corresponding dynamics can be efficiently captured using
a Volterra integral equation for the cavity amplitude [23].
The excellent correspondence between our theoretical model
and a corresponding experiment allows us to closely look
into the fascinating features following from a pulsed driv-
ing of this hybrid quantum system in the strong-coupling
regime.

Our paper is organized as follows. In Sec. II we present the
theoretical framework of our problem and summarize the most
important assumptions made. We sketch the general form of
the equations obtained, describing the two methods for solving
the Volterra equation in Appendices A and B. Furthermore, we
discuss the specific experimental realization of our theory. In
Sec. III, we consider the dynamics under the action of a long
rectangular microwave pulse which allows us to obtain the
precise form for the spin density and its parameters by detailed
comparison with the experimental results. We also present
analytical results for a Lorentzian spin density distribution and
demonstrate which features are captured by this approximation
and which are not. Section IV will then address the question of
how the decoherence in our system caused by inhomogeneous
broadening changes as a function of the coupling strength.
We show that a non-Lorentzian functional profile of the spin
distribution leads to a strong suppression of decoherence for
large values of the coupling strength—an effect known as
“cavity protection” [21,22]. Finally, in Sec. V, we propose a
scheme which allows us to induce giant coherent oscillations
between the cavity and our spin ensemble as well as to transfer
energy into the spin ensemble very efficiently.

1050-2947/2014/90(4)/043852(14) 043852-1 ©2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.90.043852


KRIMER, PUTZ, MAJER, AND ROTTER PHYSICAL REVIEW A 90, 043852 (2014)

(a)

(b)

FIG. 1. (Color online) Sketch of the hybrid quantum system
studied in this paper: (a) a spin ensemble (yellow) coupled to a
transmission-line resonator (gray) confining the electromagnetic field
inside a small volume. (b) Scheme of the spin ensemble-cavity
coupled system. An incoming signal η(t) passes through the cavity
characterized by a frequency ωc which is coupled to a spin ensemble
with each individual spin of frequency ωj . The transmitted signal is
proportional to the cavity amplitude A(t). κ and γ stand for the cavity
and spin losses, respectively.

II. THEORETICAL MODEL

We study the temporal dynamics of a system consisting
of a large spin ensemble coupled with a single-mode cavity
via magnetic or electric dipole interaction. We assume that
the distance between spins is large enough such that the
dipole-dipole interactions between spins can be neglected.
Our starting point is the Tavis-Cummings Hamiltonian (� =
1) [24],

H = ωca
†a + 1

2

N∑
j

ωjσ
z
j + i

N∑
j

[gjσ
−
j a† − g∗

j σ
+
j a]

− i[η(t)a†e−iωpt − η(t)∗aeiωpt ], (1)

where a† and a are standard creation and annihilation operators
of the single cavity mode with frequency ωc and σ+

j , σ−
j , σ z

j

are the Pauli operators associated with each individual spin
of frequency ωj . An incoming signal is characterized by
the carrier frequency ωp and by the amplitude η(t) whose
time variation is much slower as compared to 1/ωp. The
interaction part of H is written in the dipole and rotating-wave
approximation (terms ∝aσ−

j , a†σ+
j are neglected), where gj

stands for the coupling strength of the j th spin.
Despite the fact that each individual spin is coupled weakly

to the cavity, one can nevertheless reach the strong-coupling
regime due to the large number of spins which are collectively
coupled to the cavity mode (see, e.g., [2,5,9] for NV spin
ensembles). The effect of collective coupling is particularly
evident when reducing the interaction term to a collective
term �(S−a† − S+a) [25], where the collective spin operators
are given by S± = N−1/2 ∑N

j σ±
j . The prefactor �2 = ∑N

j g2
j

stands for an effective coupling strength, which scales up a

single coupling strength gj , by a factor of
√

N , so that � can be
sufficiently enhanced for the realization of the strong-coupling
regime. In this formulation the effective spin waves that are
excited by the cavity mode can be identified as superradiant
collective Dicke states which are effectively damped by the
coupling to subradiant states in the ensemble [14,21,22].
Note that the rotating-wave approximation mentioned above
is applicable only if � � ωc.

Next, we derive the Heisenberg operator equations, for the
cavity and spin operators, ȧ = i[H,a] − κa, σ̇−

k = i[H,σ−
k ] −

γ σ−
k , respectively. Here κ and γ stand for the total dissipative

cavity and spin losses. Strictly speaking, the noise operators
should also be added to the right-hand side of these equations
in order to preserve the commutation relations. However, their
expectation values vanish as was shown already in earlier
works [21,22] on the example of an NV ensemble and therefore
these terms are not included here explicitly. These Heisenberg
equations describe the dynamics to a very high accuracy,
provided that the energy of photons of the external bath is
substantially smaller than that of cavity photons, kT � �ωc.
We then write a set of equations for the expectation values,
〈a(t)〉 and 〈σ−

k (t)〉 in the frame rotating with the probe
frequency ωp. In what follows the amplitude of the pumping
signal η(t) is taken to be rather small and therefore the number
of the excited spins is always small compared to the ensemble
size. This allows us to simplify these equations further by
setting 〈σ z

k 〉 ≈ −1 (Holstein-Primakoff-approximation [26]).
With all these simplifications the equations for the cavity and
spin amplitudes become

Ȧ(t) = −[κ + i(ωc − ωp)]A(t) +
∑

k

gkBk(t) − η(t), (2a)

Ḃk(t) = −[γ + i(ωk − ωp)]Bk(t) − gkA(t), (2b)

where A(t) ≡ 〈a(t)〉 and Bk(t) ≡ 〈σ−
k (t)〉.

A. Experimental realization

In the following, we will compare our theoretical model
with one specific experimental realization, namely a λ/2
superconducting microwave coplanar waveguide resonator
magnetically coupled with a spin ensemble of negatively
charged NV centers in diamond. The corresponding exper-
iment is carried out in a standard dilution refrigerator with
a synthetic diamond placed on top of a resonator cooled to
millikelvin temperatures (∼25 mK) (see [23] for more details).
The concentration of NV centers in diamond is sufficiently
low and the distance between spins is still large enough, so
that the dipole-dipole interactions between spins is negligibly
small justifying the assumption of our model. By applying an
external magnetic field, two degenerate subensembles, which
can effectively be considered as a single subensemble, are
brought into resonance with the cavity, whereas the other
subensembles make a slight dispersive contribution only and
their influence is neglected here (see, e.g., [2,3,23] for more
details). The individual spins are distributed around the mean
frequency ωs = 2π2.6915 GHz, with the width 
 � ωs ,
which is of the order of 10 MHz. The coupling strength of
each individual spin with a cavity mode is typically of the
order of gj/2π ∼ 10 Hz [9]. However, the effective coupling
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� is enhanced by a factor of
√

N with the ensemble size
N ∼ 1012, so that � can reach values as large as 10 MHz
which is sufficient to reach the strong-coupling regime. Note
that the energy of thermal photons is substantially smaller
than that of microwave photons, kT � �ωc, resulting in an
occupation probability of the ensemble in the ground state
which is larger than 0.99. In what follows, the cavity frequency
was taken to be always equal to the spin mean frequency,
ωc = ωs = 2π2.6915 GHz. Therefore the inequality � � ωc

always holds and the rotating-wave approximation is very well
fulfilled. Note also that the spin dissipation is much smaller
than the cavity dissipation, γ � κ , so that the former does
not contribute to the dynamics realized in the experiment.
We thus omitted γ everywhere, except when necessary for
the calculation of some integrals which would otherwise be
singular.

B. Setting up the Volterra integral equation

Owing to the large number of spins within the ensemble
(N ∼ 1012), there are a lot of spins in each frequency subin-
terval around ωs which make a non-negligible contribution to
the dynamics. We can thus introduce a continuous spectral
density as ρ(ω) = ∑

k g2
k δ(ω − ωk)/�2, where �2 = ∑N

j g2
j

is the collective coupling strength of the spin ensemble to the
cavity, satisfying the normalization condition

∫
dωρ(ω) = 1.

As we shall see below, one should take special care when
choosing the functional profile of the spectral distribution
for the spin density ρ(ω), which describes its inhomoge-
neous broadening and which plays a crucial role for the
dynamics.

To go to the continuous limit (in frequency) we carry
out the following formal replacement from the discrete
function F (ωk) to the continuous one, F (ω):

∑
k F (ωk) →

�2
∫

dωρ(ω)F (ω). By integrating Eq. (2b) in time, each
individual spin amplitude, Bk(t), can be expressed in terms
of the cavity amplitude, A(t), as

Bk(t) = Bk(0)e−i(ωk−ωp−iγ )t

− gk

∫ t

0
dτe−i(ωk−ωp−iγ )(t−τ ) · A(τ ), (3)

where Bk(0) is the initial spin amplitude. Substituting Eq. (3)
into Eq. (2a) we arrive at the Volterra equation for the cavity
amplitude A(t),

Ȧ(t) = −i(ωc − ωp − iκ)A(t) +
∑

k

gkBk(0)e−i(ωk−ωp−iγ )t

−�2
∫ ∞

0
dωρ(ω)

∫ t

0
dτe−i(ω−ωp−iγ )(t−τ )A(τ ) − η(t).

(4)

After integrating Eq. (4) in time, performing lengthy but
straightforward algebraic calculations and assuming that the
cavity is initially empty, A(0) = 0, and all spins are initially
in the ground state, Bk(0) = 0, we end up with the following
Volterra equation for the cavity amplitude,

A(t) =
∫ t

0
dτK(t − τ )A(τ ) + F(t), (5)

which contains the kernel function K(t − τ ),

K(t − τ ) = �2
∫ ∞

0
dω

ρ(ω)[e−i(ω−ωc+iκ)(t−τ ) − 1]

i(ω − ωc + iκ)

× e−i(ωc−ωp−iκ)(t−τ ), (6)

and the function F(t),

F(t) = −
∫ t

0
dτ η(τ )e−i(ωc−ωp−iκ)(t−τ ), (7)

where the amplitude η(t) represents an arbitrarily shaped
incoming pulse or a sequence of pulses. Note that the kernel
function K(t − τ ) accounts for memory effects and leads in
general to a non-Markovian feedback of the NV ensemble
on the cavity. In Appendices A and B we give a detailed
description of the two methods which allow us to solve the
Volterra equation in a very efficient way.

Having calculated the cavity amplitude A(t), we can find the
expectation values of the collective spin operator, Jx + iJy =∑

k gkBk(t)/[2(
∑

i g
2
i )1/2], which in the continuous limit and

for the initial conditions A(0) = 0 and Bk(0) = 0 introduced
above read as follows:

Jx + iJy = −�

2

∫ ∞

0
dωρ(ω)

∫ t

0
dτe−i(ω−ωc)(t−τ )A(τ ). (8)

The z component of the expectation value of the collective
spin operator, Jz = ∑

k〈σ z
k 〉/(2

√
N ), remains Jz ≈ −√

N , in
accordance with the approximations discussed above.

Note that Eqs. (2a) and (2b), as well as the resulting
Volterra equation (4) are linear equations with respect to
the cavity and spin amplitudes, A(t) and Bk(t), respectively.
We can thus always rescale our solution by multiplying the
amplitude of the driving signal η(t), by an arbitrary scaling
factor. In the following we take the amplitude of the incoming
signal equal to the cavity decay rate, η = κ . Note that such a
choice corresponds to the situation when the incoming signal,
being in a coherent state, gives rise to a single photon in the
empty cavity on average. The experimental curves will be
appropriately rescaled with a constant prefactor such as to
match the corresponding theoretical curves.

III. DYNAMICS UNDER THE ACTION OF A LONG PULSE

In order to choose an appropriate form for the spectral
density ρ(ω), we compare our numerical results with the
experiment performed within the strong-coupling regime.
Specifically, we apply a rectangular microwave pulse [η(t) = η

for 0 � t � τd and η(t) = 0 otherwise; see Eq. (7)], with the
resonance carrier frequency (ωp = ωc = ωs). This pulse has
a duration τd substantially longer than the resulting period of
damped Rabi oscillations and the inverse of the total decay
rate, so that the system sets into a steady state before the
signal is turned off [see Fig. 2(a)]. Note that the total decay
rate describes the overall decoherence in our system which
consists of two contributions: The first one is due to dissipative
cavity losses κ , while the second one originates from the
inhomogeneous broadening of the spin ensemble which leads
to the dephasing of spins during the time evolution. As we
shall see below, this dephasing mechanism gives the dominant
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FIG. 2. (Color online) Cavity probability amplitude |A(t)|2 ver-
sus time t under the action of an incident long rectangular pulse of
duration 800 ns with the carrier frequency matching the resonance
condition, ωp = ωc = 2π2.6915 GHz, where ωc stands for the cavity
resonance frequency. Gray (white) area indicates a time interval
during which the pumping signal is on (off). (a) (Taken from [23].)
Red (gray) curve shows numerical results for the cavity transmission
at a coupling strength �/2π = 8.56 MHz. In the calculations
the spectral density is modeled by a q-Gaussian distribution. The
frequency of Rabi oscillations, �R = 2π19.2 MHz. Black curve
shows experimental results for the cavity transmission. (b) Red (gray)
curve is the same as in (a). Orange (light gray) curve shows results
of numerical calculations assuming a Lorentzian distribution of the
spin density.

contribution to the decoherence (the spin dissipation γ is
negligible in our case).

In accordance with our previous study [3,23], we obtain a
very good agreement between theory and experiment, when
taking a q Gaussian [27] as the distribution function for the
spectral density defined as

ρ(ω) = C

[
1 − (1 − q)

(ω − ωs)2


2

] 1
1−q

. (9)

Here q is the dimensionless shape parameter, 1 < q < 3,

γq = 2

√

2q−2
2q−2 is the full width at half maximum (FWHM),

and C is the normalization constant. Note that for q → 1
and q = 2 we recover a Gaussian and Lorentzian distribution,
respectively. From the comparison with the experiment, we
extracted the following parameters used in our calculations:
q = 1.39, γq/2π = 9.4 MHz, and κ/2π = 0.8 MHz (FWHM
of the cavity decay). We have also tested other lineshapes for
describing the spectral spin density such as the stable alpha
distribution, but found them to be less suitable for describing
the experimentally observed data.

An interesting and, at first sight, surprising fact is that the
first Rabi peak of the cavity amplitude after switching off
the microwave signal is approximately twice as large as the
steady-state amplitude, as seen in Fig. 2(a). This overshoot
effect takes place after the incoming signal is turned off,
because the energy stored in the spin ensemble is released
back to the cavity and interferes constructively with the energy
stored there (see Appendix C for more details). It will be

shown in the next section that this overshoot appears only if
the coupling strength is larger than a certain critical value. In
addition to this condition, the overshoot effect also requires a
finite amount of energy being stored in the spin ensemble, but
does not show up if it is in the ground state and the field inside
the cavity is described by a Fock state, as, for instance, when
it is fed with a single photon (see Appendix B).

A. Dynamics for a Lorentzian spin density distribution

To illustrate the importance of the spectral spin distribution,
we have also tried to achieve an agreement with the experi-
ment when assuming a Lorentzian instead of a q-Gaussian
distribution for the spectral density,

ρ(ω) = 


π [(ω − ωs)2 + 
2]
. (10)

For this purpose, we adapt the parameters such that the period
of the resulting Rabi oscillations and the cavity amplitude at the
steady state agree with the measurements [see Fig. 2(b)]. As
seen there, the Lorentzian predicts a sufficiently larger decay
rate as compared to that observed in the experiment [compare
the values of the Rabi peaks during damped Rabi oscillations
for the q Gaussian and for the Lorentzian distributions shown
in Fig. 2(b)]. Such an inadequate overestimation of the total
decay rate becomes particularly pronounced in the case of
even higher values of the coupling strength as those used
in Fig. 2 (see Sec. IV for more details). Nevertheless, it
is very instructive to consider at first the simple picture
associated with a Lorentzian distribution, because in this case
the problem can be solved analytically giving intuitive insights
into the dynamical properties of our system. By plugging the
Lorentzian distribution (10) into Eq. (4) and assuming that the
cavity is initially empty, A(0) = 0, and spins are unexcited,
Bk(0) = 0, we obtain the following Volterra equation (in the
frame rotating with ωp) under the action of a rectangular
microwave pulse introduced above for t � τd :

Ȧ(t) = −κA(t) − �2
∫ t

0
dτe−
(t−τ )A(τ ) − η. (11)

By differentiating Eq. (11) with respect to time, and after
doing some algebra, the above equation reduces to the one for
a damped harmonic oscillator driven by a time-independent
external force,

Ä(t) + [
 + κ]Ȧ(t) + [�2 + 
κ]A(t) + η
 = 0. (12)

The solution of Eq. (11), which is also the one of Eq. (12), can
be represented as A(t) = αeλ1t + βeλ2t , so that the dynamics
is characterized by two exponents, namely,

λ1,2 = [−(
 + κ) ±
√

(
 − κ)2 − 4�2]/2. (13)

In the strong-coupling regime the dynamics is underdamped,
the expression under the square root is negative, and the system
exhibits damped oscillations with the Rabi frequency,

�R =
√

4�2 − (
 − κ)2, (14)

and the decay rate of |A(t)|2 is � = 
 + κ . It is worth noting
that for the case shown in Fig. 2(b), the expression (14) for the
Rabi frequency can be approximated as �R ≈ 2�. Finally, we
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obtain the following expression for the cavity amplitude for
t � τd ,

A(t) = − 
η

�2 + 
κ
+ ηe−(
+κ)t/2

2�R(�2 + 
κ)

× [
2�R
 cos(�Rt/2)

− [
�2

R − 
2 + κ2
]

sin(�Rt/2)
]
. (15)

The reason why A(t) ∈ R in Eq. (15) is due to the fact that
the Lorentzian distribution (10) is symmetric with respect to
ωs , and ωp = ωc = ωs . For the same reason the y component
of the collective spin Jy = 0, whereas Jx(t) can easily be
determined from Eq. (2a),

Jx(t) =
∑

k gkBk(t)

2�
= Ȧ(t) + κA(t) + η

2�
. (16)

Indeed, by inserting the solution (15) into this equation we get

Jx(t) = η�

2(�2 + 
κ)
− η�e−(
+κ)t/2

2�R(�2 + 
κ)

× [(
 + κ) sin(�Rt/2) + �R cos(�Rt/2)] . (17)

By differentiating Eq. (2a) with respect to time twice, making
use of Eq. (12), and performing straightforward algebraic
calculations, we find that Jx(t) obeys also the following
equation:

J̈x(t) + 
J̇x(t) + �2Jx(t) − κ�

2
A(t) − η�

2
= 0. (18)

Therefore in the case of a Lorentzian distribution the dynamics
can be modeled by two coupled damped harmonic oscillators
governed by Eqs. (12) and (18).

Thus, after switching on a rectangular microwave signal our
system exhibits damped Rabi oscillations and it tends finally
to a steady state,

Ast = − 
η

�2 + 
κ
, J st

x = η�

2(�2 + 
κ)
, J st

y = 0, (19)

provided that the pulse duration is long enough, i.e., τd �
1/(
 + κ). (Note that this condition is very well fulfilled in
Fig. 2.) Inserting the Lorentzian profile (10) into Eq. (C6) from
Appendix C yields the equation for the cavity amplitude A(t),
which governs the decay process from the steady state given
by Eq. (19):

Ȧ(t) = −κA(t) + η�2 · e−
t

�2 + κ

− �2

∫ t

0
dτe−
(t−τ )A(τ ),

(20)

where, for the sake of simplicity, the time is counted from
zero as the pulse is turned off. As discussed in detail before
and also in Appendix C, the second term in Eq. (20) stands
for the excitation stored in the spin ensemble, which is
coherently released back into the cavity, after switching
off the microwave pulse. Similarly as done above, we can
derive from Eq. (20) a damped harmonic oscillator equation,
Ä(t) + [
 + κ]Ȧ(t) + [�2 + 
κ]A(t) = 0, so that finally the
damped Rabi oscillations of the cavity amplitude and the x

component of the collective spin to the ground state for t � τd
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)2

(Jx(t))
2

|A(t)|2

FIG. 3. (Color online) Cavity probability amplitude |A(t)|2 and
the corresponding x component of the collective spin J 2

x (t) versus
time t under the action of an incident long pulse assuming a Lorentzian
spin distribution, given by Eqs. (15) and (21), and (17) and (22),
respectively. |A(t)|2 coincides with the orange (light gray) curve from
Fig. 2(b). Symbols designate the maxima and minima of |A(t)|2 and
J 2

x (t) during the damped Rabi oscillations. The carrier frequency
matches the resonance condition, ωp = ωc = 2π2.6915 GHz, and
the frequency of Rabi oscillations, �R = 2π19.2 MHz. Gray (white)
area indicates the time interval during which the pumping signal is
on (off).

are solved by

A(t) = η · e−(
+κ)(t−τd )/2

2�R(�2 + 
κ)

[−2�R
 cos(�R(t − τd )/2)

+ (
�2

R − 
2 + κ2) sin(�R(t − τd )/2)
]
, (21)

Jx(t) = η�e−(
+κ)(t−τd )/2

2�R(�2 + 
κ)
[(
 + κ) sin (�R(t − τd ))

+�R cos(�R(t − τd )/2)]. (22)

In Fig. 3, |A(t)|2 and J 2
x (t), defined by Eqs. (15) and (21)

and by Eqs. (17) and (22), respectively, are plotted versus time
t . Note that this analytical solution for the cavity probability,
|A(t)|2, perfectly coincides with the one found numerically
which is depicted in Fig. 2(b). (For that reason the analytical
solution is not shown in this figure.) One sees that the cavity
and spin ensemble exchange their energies during the time
evolution, so that maxima of A2(t) correspond to minima
of J 2

x (t) or, in other words, the energy inside the cavity is
maximal at those moments of time, when the energy stored in
the ensemble is entirely emitted back into the cavity.

Let us summarize the collective spin dynamics under the
action of a long pulse governed by Eqs. (17) and (22) in
the ωp-rotating frame. Since Jz ≈ −√

N is always valid,
our dynamics is restricted to the vicinity of the pole of
the Bloch sphere. Additionally, Jy = 0 owing to symmetry
arguments. As a rectangular microwave signal is turned on, the
x component Jx(t) exhibits damped Rabi oscillations starting

043852-5



KRIMER, PUTZ, MAJER, AND ROTTER PHYSICAL REVIEW A 90, 043852 (2014)

0 50 100 150
t(ns)

0

2×10
-3

|A
(t

)|2

Ω/2π=6 MHz
Ω/2π=7.15 MHz
Ω/2π=12 MHz

0 5 10 15 20
Ω/2π (MHz)

(a) (b)

|A
st
|
2

|A
1
|
2

FIG. 4. (Color online) Damped Rabi oscillations from the sta-
tionary state which the system exhibits after the action of an incident
long pulse assuming a Lorentzian spin distribution. (a) Cavity
probability amplitude given by Eq. (21), versus time for three different
values of the coupling strengths, �/2π = 6,7.15 and 12 MHz [black,
red (gray), orange (light gray)]. The carrier frequency matches the
resonance condition, ωp = ωc = 2π2.6915 GHz. The lowest value
for the stationary state corresponds to the highest value of � in
accordance with Eq. (19). (b) The amplitude of the stationary state
|Ast|2 and the amplitude of the first maximum |A1|2, versus coupling
strength � during the damped Rabi oscillations [see Eqs. (19)
and (23)]. Black symbol designates the intersection between these
two curves at the value of coupling strength �/2π = 7.15 MHz,
below which the overshoot effect is absent.

from the ground state and tends towards a steady state J st
x .

After the signal is switched off, Jx(t) again undergoes damped
Rabi oscillations and returns to its initial state on the pole of
the Bloch sphere. These spin components in the ωp-rotating
frame are connected with those in the laboratory frame
as follows: J lab

x (t) = Jx(t) cos(ωpt), J lab
y (t) = Jx(t) sin(ωpt),

and J lab
z (t) = Jz(t) ≈ −√

N . From these expressions follows
that in the laboratory frame high frequency oscillations are
superimposed on the damped Rabi oscillations found in the ωp

frame. Moreover, the steady state in the ωp frame is represented
by a simple precession around the z axis in the laboratory
frame.

We show in Fig. 4 that the first Rabi peak of the cavity
amplitude after switching off the driving pulse may exceed
the corresponding steady-state value (overshoot effect), if the
value of the coupling strength is above a certain threshold.
As discussed earlier in this section, this effect is in principle
possible due to the fact that in the steady state at constant
driving nonzero energy is preliminarily stored in the spin
ensemble. However, the smaller the coupling strength � is,
the larger the value of the cavity amplitude |Ast|, and the
weaker the excitation of the spin ensemble |J st

x |; see Eq. (19).
In the limiting case of � → 0, there is no coupling to the spin
ensemble, and it remains unexcited, J st

x = 0, whereas |Ast|
acquires its maximal value, |Ast| = η/κ . The overshoot effect
can be easily quantified analytically by searching for the first
maximum of the decaying cavity amplitude (21), which is

found to be

A2
1 = A2

ste
− 2(
+κ)

�R
arccos[−(
−κ)/(2�)]

. (23)

We present A2
1 and A2

st versus coupling strength � in Fig. 4(b),
where one can see that the overshoot effect is realized for
�/2π > 7.15 MHz (for the Lorentzian distribution). Note that
the strong-coupling regime, the hallmark of which are Rabi
oscillations, terminates at �/2π = 2 MHz, where A1 = 0. At
lower values of the coupling strength the oscillations do not
occur and the dynamics becomes Markovian (see Sec. IV for
more details).

B. Dynamics for the q-Gaussian spin density distribution

After considering the case of a Lorentzian distribution for
the spin density, which allows us to capture some of the
important features of the dynamics, we return to the case of the
q-Gaussian density profile to describe the dynamics accurately
and to demonstrate a qualitatively new effect not existing in
the framework of the Lorentzian distribution, i.e., the so-called
cavity protection effect (see Sec. IV).

In Fig. 5 we present the coherent energy exchange between
cavity and spin ensemble under the action of the long pulse,
which looks rather similar to the one shown in Fig. 3 for the
Lorentzian distribution. For the latter, however, our analysis
predicts an overestimated decay rate with deviations that
grow to an unacceptable degree for higher values of the
coupling strengths as will be demonstrated in Sec. IV. Another
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FIG. 5. (Color online) Cavity probability amplitude, |A(t)|2, and
the corresponding x component of the collective spin J 2

x (t), versus
time t under the action of an incident long pulse for the q-Gaussian
spin distribution. |A(t)|2 coincides with the red (gray) curve from
Fig. 2(b). Symbols designate the maxima and minima of, respectively,
|A(t)|2 and J 2

x (t) during the damped Rabi oscillations. The carrier fre-
quency matches the resonance condition, ωp = ωc = 2π2.6915 GHz,
and the coupling strength 2� = 2π17.12 MHz. The frequency of the
resulting Rabi oscillations, �R = 2π19.2 MHz. Gray (white) area
indicates the time interval during which the pumping signal is on
(off).
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FIG. 6. (Color online) Cavity probability amplitude, |A(t)|2, ver-
sus time t under the action of an incident long pulse with the
carrier frequency matching the resonance condition, ωp = ωc =
2π2.6915 GHz. The coupling strength 2� is (a) 2π15.8 MHz; (b)
2π12.0 MHz; (c) 2π10.2 MHz; (d) 2π2.12 MHz. Gray (white) area
indicates the time interval during which a pumping signal is on (off).
[Red (gray) curves] results of numerical calculations; (black curves)
experimental results for the cavity transmission.

signature of the non-Lorentzian line shape of our spectral
spin distribution ρ(ω) is that the Rabi frequency �R deviates
significantly from twice the value of the coupling strength
2�. In other words, our hybrid cavity-spin system cannot be
modeled as two coupled damped harmonic oscillators as in the
case of a purely Lorentzian spin distribution.

In Fig. 6 we show the dynamics under the action of
a long pulse for the resonant case, ωp = ωc = ωs , but for
different values of the coupling strength � [29]. One can see in
Figs. 6(a)–6(d) that the steady-state value, |Ast|, increases as �

decreases, which is in line with Eq. (C5). One can also see that
the value of the first Rabi peak decreases with a decrease of the
coupling strength. As a result, the overshoot effect fades away
gradually; finally the Rabi oscillations disappear, implying that
we enter the regime of Markovian dynamics. As discussed in
Sec. III A these features are also qualitatively captured when
approximating the spin density by the Lorentzian distribution.

Next, we keep the value for the coupling strength constant
(staying in the strong-coupling regime) and vary the probe
frequency (see Fig. 7). The larger the mismatch from the
resonance condition, ωp = ωc = ωs , the less visible the Rabi
oscillations, so that finally they become completely blurred.
The reason for this behavior is the following: As the probe
frequency ωp gets increasingly detuned from the central spin
frequency ωs , the phase in the exponential function of Eq. (4)
increases at those frequencies where the contribution of ρ(ω)
is non-negligible. As a consequence, during subsequent time
integration the resulting integral becomes small due to the
fast oscillations of the exponential function, so that the effect
of strong coupling smears out. In this case the dynamics is

0
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FIG. 7. (Color online) Cavity probability amplitude, |A(t)|2, ver-
sus time t under the action of an incident long pulse for different values
of the carrier frequency: (a) ωp = ωc; (b) ωp = ωc ± �R/8; (c) ωp =
ωc ± �R/4; (d) ωp = ωc ± �R/2, where ωc = 2π2.6915 GHz and
�R = 2π19.2 MHz are, respectively, the cavity and Rabi frequencies.
Gray (white) area indicates the time interval during which the driving
signal is on (off). Red (gray) curves show results of numerical
calculations for the coupling strength 2� = 2π17.12 MHz. Black
curves show experimental results for the cavity transmission.

reminiscent of the Markovian regime which occurs right at the
resonance condition but for small values for � [see Fig. 6(d)].

We would like to emphasize that in our numerical calcu-
lations shown in Figs. 6 and 7, we vary only the values for
the coupling strength and probe frequency, whereas all other
parameters are kept the same as those in Fig. 2(a). Still, the
agreement between our theoretical model and the experiment
is found to be excellent.

IV. CLASSIFICATION OF THE DYNAMICS

To clarify the role played by the non-Lorentzian inhomo-
geneous broadening, we classify the dynamics by calculating
and measuring the total decay rate � of the cavity amplitude
squared, |A(t)|2, from its steady-state value for different
coupling strengths �. For the sake of simplicity, we focus on
the resonant case, ωp = ωc = ωs , only. It should be stressed
that the total decay rate � is independent of the initial
conditions (see also [23]), so that we can start from simpler
initial conditions corresponding to the case when only a single
photon is populating the cavity and the spin ensemble is
in the ground state, |1,G〉 = a†(t = 0)|0〉 (|0〉 corresponds
to the vacuum state). In this case it is possible to get a
relatively simple form for the Laplace transform of the Volterra
equation and to considerably speed up the calculations (see
Appendix B). One can prove that the Volterra equation (4) is
indeed the governing equation for A(t) also in this case with the
initial condition, A(t = 0) = 1 and Bk(t = 0) = 0, by virtue of
the following arguments. Acting with the Heisenberg operator
equations on the bra- and ket-vectors 〈0| and a†(t = 0)|0〉,
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FIG. 8. (Color online) Decay rate � of the the cavity mode
|A(t)|2 versus coupling strength �. (Red curve) Decay rates ex-
tracted from the full numerical calculations with the q-Gaussian
spin distribution. (Black symbols) Experimentally observed decay
rates. [Green curve (1)] Decay rate under the assumption of a
Lorentzian distribution of the spin density. The overdamped regime
(�/2π < 1.8 MHz) is characterised by two exponents given by
� = 
 + κ ±

√
(
 − κ)2 − 4�2. The regime of underdamped os-

cillations (�/2π > 1.8 MHz) with the Rabi frequency (14) has
the constant decay rate, � = 
 + κ . [Orange curve (2)] � derived
under Markovian approximation, � = 2[κ + π�2ρ(ωs)]. [Magenta
curve (3)] An estimate for � within the strong-coupling regime
with a well-resolved Rabi splitting in the limit of � → ∞, � =
κ + π�2ρ(ωc ± �). [Blue curve (4)] The decay rate in the absence
of dephasing. For �/2π < 0.2 MHz the overdamped regime is
characterized by two exponents � = κ ± √

κ2 − 4�2. In the opposite
case, �/2π > 0.2 MHz, the regime of underdamped Rabi oscillations
takes place with the Rabi frequency

√
4�2 − κ2 and the constant

decay rate � = κ . (White region) Markovian dynamics. (Gray region)
Non-Markovian dynamics.

respectively, it can be shown that the corresponding equations
for the expectation values coincide with Eqs. (2a) and (2b) from
Sec. II. The only formal difference now is that the amplitudes
A(t) and Bk(t) are given as A(t) ≡ 〈0|a(t)a†(t = 0)|0〉 and
Bk(t) ≡ 〈0|σ−

k (t)a†(t = 0)|0〉, respectively. Thus the variable
A(t) describes the probability amplitude for a photon to be
in the cavity at time t , if it was there initially, A(t = 0) ≡
〈0|a(t = 0)a†(t = 0)|0〉 = 〈1,G|1,G〉 = 1.

The results are presented in Fig. 8, where we show that the
decay rate varies surprisingly strongly and in a nonmonotonous
fashion with � covering a range of almost one order of
magnitude (see the red curve in this figure). Before going
to further details, let us analyze at first how the decay rate �

behaves as a function of the coupling strength under different
simplifying assumptions.

For the case of a Lorentzian distribution for the spin density,
the decay process is characterized by two exponents given
by Eq. (13). If 4�2 > (
 − κ)2, then the Rabi oscillations
are underdamped and the total decay rate reduces to � =

 + κ . In the opposite case, we are dealing with a pure
exponential decay without oscillations (overdamped regime)

with � = 
 + κ ±
√

(
 − κ)2 − 4�2. Thus, the Lorentzian
distribution gives rise to qualitatively different behavior for
the decay process as compared to the q-Gaussian one, since
� remains constant in the whole range of � within the
strong-coupling regime. However, as is unambiguously seen in
Fig. 8, the nonmonotonic behavior obtained in the framework
of the q-Gaussian spin density distribution is supported by our
experimental data thereby confirming our initial assumption
for the shape of this distribution.

In the absence of inhomogeneous broadening, when the
spin density function is written as ρ(ω) = δ(ω − ωs), the
expressions for the decay rate are obtained from those for
a Lorentzian distribution by setting its width to zero, 
 = 0.
Thus, in the regime of underdamped oscillations we get � = κ ,
whereas in the overdamped regime, � = κ ± √

κ2 − 4�2.
Correspondingly, the blue lines in Fig. 8 determine the lowest
border for possible decay rates reached in our system, because
the values for � in the presence of inhomogeneous broadening
should always be larger than the corresponding ones in the
case when it is absent. It is seen from Fig. 8 that this condition
is indeed always fulfilled.

Next, we apply the so-called Markov approximation in
Eq. (4) with respect to the cavity amplitude A(t) which implies
that the memory effects caused by a feedback from the NV
ensemble onto the cavity are disregarded. Specifically, we shift
the initial time of integration on the right-hand side of Eq. (4) to
−∞, put A(τ ) ≈ A(t), and make use of the Sokhotski-Plemelj
theorem (C5) in the limit of γ → 0, when performing the
integration with respect to ω. Under all these assumptions
the third term on the right-hand side of Eq. (4) reduces to
(ωp = ωs),

−�2
∫ ∞

0
dωρ(ω)

∫ t

0
dτe−i(ω−ωs−iγ )(t−τ )A(τ )

≈ i�2A(t)
∫ ∞

0

dωρ(ω)

ω − ωs − iγ
= −π�2ρ(ωs) · A(t). (24)

Note that the principal value does not appear in the above
equation because ρ(ω)/(ω − ωs), is an antisymmetric function
with respect to the singular point, ω = ωs . In the simplest
case when there is no driving and all spins are initially in
the ground state, the Volterra equation (4) reduces to Ȧ(t) =
−[κ + π�2ρ(ωs)]A(t). Therefore, the Markov approximation
leads to a pure exponential decay with the decay rate, � =
2[κ + π�2ρ(ωs)]. The spin ensemble density thus gives rise to
a significant enhancement of the cavity decay rate as compared
to the one for a bare cavity, � = 2κ . Remarkably, this effect has
a direct analogy to the Purcell enhancement of the spontaneous
emission rate of a single emitter inside a cavity [28] which
appears due to the increase of the local density of photonic
states at the emitter position as compared to the vacuum
case. The Markov approximation, however, loses its validity
at fairly low coupling strengths, starting to deviate from the
real values of � already at �/2π ≈ 1.5 MHz (see Fig. 8). The
hallmark of non-Markovianity of the resulting dynamics are
Rabi oscillations setting in at higher values of �.

In a next step we put forward an analytical estimate for
the decay rate in the limit of very strong coupling (� → ∞)
employing the Laplace transform of our Volterra equation
summarized in Appendix B. For that purpose we use recently
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developed concepts for another cavity QED problem dealing
with non-Markovian quantum dynamics of a single emitter
inside an open multimode cavity [30]. The key insight from that
study is that the dominant frequency components contributing
to the dynamics of A(t) are those which are resonant in
its Laplace transform, U (ω), given by Eq. (B7). For such
resonances to occur we find the following requirement on the
nonlinear Lamb shift (B8), ωr − ωc = �2δ(ωr ). In the limit of
sufficiently large values of the coupling strength the Laplace
transform, U (ω), has a well-resolved double-peak structure
with two resonance frequencies given approximately by ωr ≈
ωc ± �. Furthermore, A(t) essentially displays damped Rabi
oscillations of the form, A(t) ∼ cos(�t)e−[κ+π�2ρ(ωc±�)]t/2,
due to the Fourier transforms of the two curves in U (ω)
centered at these two resonance frequencies. One can see
in Fig. 8 that such an estimate for the decay rate, � =
κ + π�2ρ(ωc ± �), works rather well if �/2π � 25 MHz.
Thus, in contrast to the Markovian dynamics, the relevant
frequencies which contribute to the value of the decay
rate are those associated with two resonant peaks in U (ω).
Remarkably, a pair of poles in the complex plane occurring
for �/2π � 25 MHz do not spoil this asymptotic behavior
(see Appendix B). Note that our expression for the decay rate
in the limit of � → ∞ coincides with the one obtained in [22],
where the behavior of poles of the stationary transmission has
been analyzed.

Cavity protection effect

It follows from the above analysis that for spectral distribu-
tions ρ(ω) whose tails fall off faster than 1/ω2, an increasing
coupling strength inevitably leads to a reduction of the decay
rate �, so that the system will finally be protected against
decoherence, a phenomenon referred to as “cavity protection
effect” [21,22]. It is not hard to see that our q Gaussian satisfies
such a requirement, whereas a Lorentzian spin distribution
does not. As a consequence, the latter does not protect the
cavity against decoherence, featuring a constant decay rate
in the strong-coupling regime (see green line in Fig. 8). In
contrast, our numerical analysis for the q Gaussian shows
that for a collective coupling strength of �/2π ∼ 25 MHz,
the decay rate induced is already suppressed below 8% of its
maximal value at �/2π ∼ 2.25 MHz. It is interesting to note
that the minimal possible value for the decay rate reached in
the limit of large � is κ whereas the decay rate for a bare
cavity without diamond is 2κ . This can be explained by the
fact that due to the strong coupling between the spin ensemble
and the cavity, the excitation is trapped by 50% within the spin
ensemble which has a negligible direct decay rate during the
course of our experiment.

Physically, the “cavity protection effect” can be understood
as follows: In the presence of inhomogeneous spin broadening,
the polariton states, defined as superpositions of the cavity
mode with the superradiant (bright) spin-wave modes, become
coupled to the subradiant (dark) spin-wave modes [21]. This
coupling acts as the main source of decoherence, leading to a
strong damping of the polariton modes. However, for strong
enough coupling strength, the Rabi splitting of the polariton
peaks opens up a gap for the super-radiant polaritons. If
the spectral profile of the inhomogeneous spin distribution

decays sufficiently fast for increasing gap size, an energetic
decoupling of the super-radiant polaritons from the subradiant
spin-wave modes occurs, leading to a suppressed damping of
the polaritons and to a corresponding decrease of their peak
linewidth.

V. COHERENTLY DRIVEN SPIN ENSEMBLES

In a next step we address an important question arising
in the context of possible realizations of coherent-control
schemes, which is how to reach high excitation levels in the
spin ensemble with a driving signal that has only limited power
to avoid heating up the hybrid quantum device. We have seen
in Sec. III A that the assumption of a Lorentzian distribution
for the spin density leads to a simplified picture reducing
the dynamics to the one of two coupled damped harmonic
oscillators, where one of them stands for the cavity and the
other for the spin ensemble. Furthermore, the expectation value
of the collective spin operator can formally be excluded, so that
we end up with a single equation for the cavity amplitude which
has the same form as the equation for a damped and driven
harmonic oscillator. Therefore, if our system is subjected to a
periodic driving force, a resonance is expected to occur when
the driving frequency is equal to the characteristic frequency
of the system. Based on this reduced model, we conjecture
that coherent cavity oscillations, and as a consequence, spin
ensemble oscillations with a large amplitude can also be
achieved for the q-Gaussian spin distribution. Also in this
case the system needs to be driven periodically, so that the
period of η(t) matches the resonance condition given by the
Rabi period, TR = 2π/�R .

By pumping the cavity by a sequence of rectangular pulses
with a carrier frequency ωp = ωc = ωs , phase switched by
π , we indeed reveal a strongly resonant structure of |A(t)|2
as a function of pulse duration τ and time t (see Fig. 9).
The corresponding increase of |A(t)|2 can reach two orders of
magnitude as compared to the case when the system is driven
by a long rectangular pulse [see Fig. 2(a)], provided that the
resonance condition is met, τ = 2π/�R (see Fig. 10). Note
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FIG. 9. (Color online) Cavity probability amplitude |A(t)|2 un-
der the action of 11 successive rectangular microwave pulses with
carrier frequency ωp = ωc = ωs = 2π2.6915 GHz, phase switched
by π , as a function of time and pulse duration τ . The white line
indicates the corresponding moment of times, 11τ , at which the
driving signal is switched off. The coupling strength 2�/2π =
17.12 MHz.
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FIG. 10. (Color online) Resonant dynamics under the action of
11 successive rectangular microwave pulses (horizontal cut of Fig. 9
at τ = 2π/�R = 52 ns). This specific driving corresponds to the
largest enhancement of both the cavity amplitude |A(t)|2 and the x

component of the collective spin J 2
x (t) which coherently exchange

the energy during course of time. [Red (gray) curve] Results of
numerical calculations for |A(t)|2. (Black curve) |A(t)|2 measured
in the experiment. [Orange (light gray) curve] Results of numerical
calculations for J 2

x (t). The alternating gray and white vertical bars
designate the pulses sketched at the top of Fig. 9. The last white
area corresponds to the damped dynamics when the driving signal is
switched off.

that the net power injected into the cavity, when applying a long
rectangular pulse or a sequence of rectangular pulses phase
switched by π , is exactly the same as we are just periodically
changing the sign of the amplitude. Also in both cases the
cavity and spin ensemble coherently exchange their energy, so
that the cavity amplitude |A(t)|2 oscillates in antiphase with
respect to the spin ensemble component J 2

x (t).
In Fig. 11 we present results for such a resonant driving

both for a q Gaussian and for a Lorentzian profile of the
spectral distribution for the spin density. We take the value of
the coupling strength, �/2π = 25 MHz, for which the deco-
herence effect caused by the q-Gaussian form of the inhomoge-
neous broadening is strongly suppressed. Indeed, the resulting
total decay rate shown in Fig. 8 for this value of � is 3.7
times smaller than that for �/2π = 8.56 MHz used so far
in Figs. 9 and 10 and 5.4 times smaller than the total decay
rate predicted in the framework of the Lorentzian distribution.
For this situation we see that the giant oscillations of the cavity
probability amplitude, |A(t)|2, induced by the resonant driving
are a factor of 20 larger than what would be predicted for by
a Lorentzian functional profile. This clear signature of the
“cavity-protection effect” paves the way for the realization of
sophisticated coherent-control schemes in the strong-coupling
regime of QED.

In a further study we take the probe frequency out of
resonance with the cavity ωp �= ωc. (The condition ωc = ωs ,
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FIG. 11. (Color online) Resonant dynamics under the action of
70 successive rectangular microwave pulses (ωp = ωc = ωs) for a
pulse duration τ = 2π/�R = 19.5 ns. [Red (gray) curve] Numerical
results for the q-Gaussian spin distribution. The coupling strength
is chosen to be �/2π = 25 MHz. In this case the value for the
total decay rate � (see Fig. 8) is 3.7 times smaller than that for
�/2π = 8.56 MHz used so far in Figs. 9 and 10. [Orange (light
gray) curve] Corresponding numerical results for the Lorentzian spin
distribution.

however, always holds.) In Fig. 12 we present the maximal
value of the cavity amplitude, max[|A(t)|2], reached during
coherent oscillations to which the system sets in under the
action of incident rectangular pulses of duration τ that are
phase switched by π . We deduce from this figure that the cavity
amplitude experiences maximal growth at the resonance
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FIG. 12. (Color online) The maximal value of the cavity prob-
ability amplitude |A(t)|2, max[|A(t)|2], reached during coherent
oscillations to which the system sets in under the action of incident
rectangular pulses of duration τ that are phase switched by π . We
consider four different values for the carrier frequency of our periodic
driving signal: ωp = ωc; ωp = ωc ± �R/8; ωp = ωc ± �R/4; ωp =
ωc ± �R/2, where ωc = 2π2.6915 GHz and �R = 2π19.2 MHz are,
respectively, the cavity and Rabi frequencies.
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condition, ωp = ωc = ωs . It is worth noting that for the
off-resonant cases (ωp �= ωc) the right peak of max[|A(t)|2]
appears exactly at such values of π/τ which correspond to the
mismatching value of the probe frequency from the resonant
case (ωp = ωc). A similar tendency is also seen for the left peak
for not too high values of the mismatch from the resonance
condition.

VI. CONCLUSIONS

We have studied in detail the dynamics of an inhomoge-
neously broadened spin ensemble interacting with a single
cavity mode. For that purpose we numerically solved the
Volterra integral equation for the cavity amplitude which
explicitly contains the spin distribution function describing
the inhomogeneous broadening of the spin ensemble. By
assuming a Lorentzian functional profile for the spin density,
we solved the problem analytically. This analytical solution
provides an intuitive understanding of some important features
of the resulting spin-cavity dynamics, such as an overshoot
effect resulting from the constructive interference between
the energy stored in the spin ensemble and in the cavity.
Several features of the temporal dynamics in the strong-
coupling regime are, however, specifically due to the q-
Gaussian spectral spin density which we find to be realized
in our experiment. In particular, the non-Lorentzian functional
profile of the spin distribution allows us to observe as well
as to accurately describe a phenomenon known as “cavity
protection effect” [21,22] for large values of the coupling
strength. This effect results in a complete suppression of
the decoherence induced by inhomogeneous broadening in
the strong-coupling regime. To highlight the potential of this
effect for the implementation of coherent-control schemes,
we reveal how an appropriately chosen pulse sequence can
excite giant coherent oscillations between the cavity and the
spin ensemble. We classify the dynamics as a function of
the coupling strength and the probe frequency covering both
Markovian and non-Markovian regimes.
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APPENDIX A: DIRECT TIME INTEGRATION OF THE
VOLTERRA EQUATION

Although Eq. (5) has a relatively simple form, it is a
challenging task to solve it numerically. There are two reasons
for that: First, in order to calculate the cavity amplitude at
time t , one should know the amplitude A(τ ) at all previous
instants, τ < t (memory effect). Second, an integration with
respect to the frequency in the kernel function K(t − τ ) has to

be performed for each t and τ < t [see Eq. (6)]. The smallest
possible time scale in our problem is given by T = 2π/ωp ∼
0.4 ns. To achieve a very good accuracy of the calculations,
we solve the equation on a temporal mesh with uniform
spacing, choosing a time step dt ∼ 0.05 ns (see, e.g., [31]
for more details about the method). The direct discretization
of K(t − τ ) on the time interval of the order of μs (typical
time of measurements) leads to a high-dimensional matrix (of
a size typically exceeding 104 × 104), which, together with
the integration with respect to frequency, makes the problem
computationally intractable by way of a direct numerical
solution.

To overcome this problem and to speed up the calculations
drastically, we divide the whole time integration into many
successive subintervals, Tn � t � Tn+1, with n = 1,2,.... Such
a time division can, in principle, be implemented arbitrarily
but we choose it to be adapted to our experimental realization.
Specifically, for a sequence of rectangular pulses with phase
inversion, the driving amplitude is unchanged within each
subinterval, so that η(t) is written as ηn = (−1)n+1 · η, where
n = 1,2,3,.... Thus, in order to proceed with the integration
on the nth time interval, which starts from the initial value
An(Tn), we have to provide the result of integration obtained
in the previous step, A(n−1)(Tn). The recurrence relation (time
runs within Tn � t � Tn+1 for n = 1,2,3,...) then reads

A(n)(t) =
∫ t

Tn

dτK(t − τ )A(n)(τ ) + F (n)(t), (A1)

where the kernel function K(t − τ ) is defined by Eq. (6) and

F (n)(t) = e−i(ωc−ωp−iκ)(t−Tn)

{
A(n−1)(Tn)

+�2
∫ ∞

0
dω

ρ(ω)[e−i(ω−ωc+iκ)(t−Tn) − 1]

i(ω − ωc + iκ)
· In(ω)

}

− iηn

ωc − ωp − iκ
[1 − e−i(ωc−ωp−iκ)(t−Tn)]. (A2)

Note also that the memory on previous events enters not only
through the amplitude A(n−1)(Tn) but also through the function,

In(ω) = e−i(ω−ωp)(Tn−Tn−1)In−1(ω)

+
∫ Tn

Tn−1

dτe−i(ω−ωp)(Tn−τ )A(n−1)(τ ). (A3)

The initial conditions at t = T1 = 0 are defined as A(T1) = 0
and I1(ω) = 0 if the cavity is empty and spins are in the ground
state.

The above technique allows us to solve Eq. (5) accurately
while being very efficient in terms of computational time. We
have tested the accuracy of our numerical results by varying
the discretization both in time and frequency in a wide range
obtaining excellent agreement with the experimental results,
thereby confirming the accuracy of our method.

APPENDIX B: LAPLACE TRANSFORM OF THE
VOLTERRA EQUATION

In order to speed up the calculations of the decay rate for
different values of the coupling strengths �, and to derive an
analytical expression for it in the limit of � → ∞, we perform
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σ

2

1

iω

3

FIG. 13. Contour completion in the complex plane s = σ + iω

for the calculation of the inverse Laplace transform. Those contours
which give nonzero contribution are designated by numbers. (Open
circle) The pole which appears in the regime of weak coupling for
�/2π � 1.7 MHz (Markovian dynamics). (Two solid circles) Two
poles which show up in the strong-coupling regime for �/2π �
25 MHz. The zigzag line corresponds to the branch cut along the
negative part of the imaginary axis.

a Laplace transformation of the Volterra equation,

Ȧ(t) = −κA(t) − �2
∫ ∞

0
dωρ(ω)

∫ t

0
dτe−i(ω−ωp)(t−τ )A(τ ),

(B1)

assuming that the decay process starts from the most simple
initial condition, A(t = 0) = 1, when the cavity is fed with a
single photon and the spin ensemble is in the ground state.
For the sake of simplicity we consider the resonant case only,
ωp = ωc = ωs . To carry out the Laplace transformation we
multiply Eq. (B1) by e−st and integrate both sides of the
equation with respect to time from 0 to ∞ (see, e.g., [32]
for more details). Here s = σ + iω is the complex variable so
that we reformulate our problem by solving it in the complex
plane of s. After straightforward calculations, the algebraic
equation for the Laplace transform, Ã(s) = ∫ ∞

0 dt e−stA(t), is
derived which is solved by

Ã(s) = 1

s + κ + �2
∫ ∞

0

dωρ(ω)

s + i(ω − ωc)

. (B2)

By performing the inverse Laplace transformation, A(t) =
1

2πi

∫ σ+i∞
σ−i∞ ds estÃ(s), we obtain the following formal solu-

tion for the cavity amplitude A(t),

A(t) = eiωct

2πi

∫ σ+i∞

σ−i∞

estds

s + κ + iωc + �2
∫ ∞

0
dωρ(ω)
s+iω

, (B3)

where σ > 0 is chosen such that the real parts of all
singularities of Ã(s) are smaller than σ . It can be proved that
the integral in the denominator of Eq. (B3) has a jump when
passing across the negative part of the imaginary axis leading

to the branch cut in the complex plane of s (see Fig. 13 and
also [30]).

By setting the denominator of the integrand in Eq. (B3)
to zero, we derive the following equations for a simple pole,
sj = σj + iωj ,

σj = − κ

1 + �2
∫ ∞

0

dωρ(ω)

σ 2
j + (ωj + ω)2

, (B4)

ωj = −ωc + �2
∫ ∞

0

dωρ(ω)(ωj + ω)

σ 2
j + (ωj + ω)2

. (B5)

It turns out that a single solution to Eqs. (B4) and (B5) exists
within the weak-coupling regime in a rather narrow interval
of the coupling strengths, �/2π � 1.7 MHz. [It is seen that
in the limit of � → 0, Eqs. (B4) and (B5) are solved by
σj ∼ −κ and ωj = −ωc, respectively.) We also find a pair
of poles with σ1 = σ2 < 0, |σ1,2| � κ , and ω1,2 = −ωc ± ε

in the strong-coupling regime for large values of the coupling
strength starting from �/2π ≈ 25 MHz. Note that both |σ1,2|
and ε grow with increasing �.

Next, we apply Cauchy’s theorem to a closed contour to
evaluate the original integral Eq. (B3) taking into account
that only a few paths of those shown in Fig. 13 contribute.
Finally, we end up with the following expression for the cavity
amplitude A(t):

A(t) = eiωct

⎧⎨
⎩�2

∫ ∞

0
dωe−iωtU (ω) +

∑
j

Rj

⎫⎬
⎭ , (B6)

where

U (ω) = lim
σ→0+

,

×
{

ρ(ω)

(ω − ωc − �2δ(ω) + iκ)2 + (π�2ρ(ω) + σ )2

}

(B7)

is the kernel function and

δ(ω) = P
∫ ∞

0

dω̃ρ(ω̃)

ω − ω̃
(B8)

can be interpreted as the nonlinear Lamb shift of the cavity
frequency ωc. Here P stands for the Cauchy principal value
and Rj is the contribution of poles (if at all existing),

Rj = e(σj +iωj )t

1 − �2
∫ ∞

0

dωρ(ω)

[σj + i(ωj + ω)]2

. (B9)

APPENDIX C: DECAY PROCESS FROM
THE STEADY STATE

After applying a long rectangular pulse, both the cavity
amplitude and spin ensemble settle to a finite value in the
steady state (see Figs. 2, 3, and 5). Here we explore the
decay process from this steady-state solution in more detail.
To avoid cumbersome expressions we present, without loss
of generality, the results for the resonant case only, ωp =
ωc = ωs . To obtain a stationary solution, we set the time
derivatives in Eqs. (2a) and (2b) to zero, Ȧ(t) = Ḃk(t) =

043852-12
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0, go to the continuous limit (in frequency), and finally
derive the following expressions for the cavity amplitude and
for the expectation values of the following collective spin
operators,

Ast = η

−κ + i�2
∫ ∞

0 dω
ρ(ω)

ω − ωs − iγ

, (C1)

J st
x + iJ st

y =
∑

k gkB
st
k

2�
= iAst�

2

∫ ∞

0
dω

ρ(ω)

ω − ωs − iγ
.

(C2)

It can be easily proved, that the expressions above are real
because the q Gaussian is symmetric with respect to ωs , and
as a consequence, J st

y = 0 and Ast ∈ R. Note that the second
term in the Volterra equation (4) stands for the energy coming
back to the cavity from the initial (steady) state of a spin
ensemble, which in the continuous limit is found to be∑

k

gkB
st
k e−i(ωk−ωs−iγ )t

= iAst�
2
∫

dωρ(ω)
e−i(ω−ωs−iγ )t

ω − ωs − iγ
, (C3)

leading to the following Volterra equation,

Ȧ(t) = −κA(t) + iAst�
2
∫ ∞

0
dωρ(ω)

e−i(ω−ωs−iγ )t

ω − ωs − iγ

−�2
∫ ∞

0
dωρ(ω)

∫ t

0
dτe−i(ω−ωs−iγ )(t−τ )A(τ ).

(C4)

From this expression we can conclude that the energy which
is first stored and then released from the spin ensemble is

exactly the reason for the pronounced overshoot in the cavity
amplitude [see the example shown in Fig. 2(a)]. Note that if
initially the spin ensemble is in the ground state, Bk(0) = 0,
then the overshoot effect will never occur, as is the case for
initial conditions described in Appendix B (the cavity is fed
with a single photon and a spin ensemble is in the ground state).

Next, employing the Sokhotski-Plemelj theorem, in the
limit of γ → 0,

∫ ∞

0

dωF (ω)

ω − ωs − iγ
= P

∫ ∞

0

dωF (ω)

ω − ωs

+ iπF (ωs),

where P denotes the Cauchy principal value, Eqs. (C1)
and (C4) are finally reduced to (the resonance case, ωp =
ωc = ωs , is considered only)

Ast = − η

κ + π�2ρ(ωs)
, (C5)

and

Ȧ(t) = −κA(t)

+Ast�
2

{∫ ∞

0
dωρ(ω)

sin[(ω − ωs)t]

ω − ωs

− πρ(ωs)

}

−�2
∫ ∞

0
dωρ(ω)

∫ t

0
dτe−i(ω−ωs−iγ )(t−τ )A(τ ).

(C6)

This equation describes the damped Rabi oscillations from the
steady state after switching off a long pulse for a general form
of the spin density, including both Lorentzian and q-Gaussian
distributions [see results presented in Figs. 2(a) and 2(b)].
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Rev. A 89, 033820 (2014).

[31] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery,
Numerical Recipes: The Art of Scientific Computing (Cambridge
University Press, New York, 2007).

[32] K. F. Riley, M. P. Hobson, and S. J. Bence, Mathematical
Methods for Physics and Engineering (Cambridge University
Press, Cambridge, 2006).

043852-14

http://dx.doi.org/10.1103/PhysRevB.82.201201
http://dx.doi.org/10.1103/PhysRevB.82.201201
http://dx.doi.org/10.1103/PhysRevB.82.201201
http://dx.doi.org/10.1103/PhysRevB.82.201201
http://dx.doi.org/10.1103/PhysRevX.4.021049
http://dx.doi.org/10.1103/PhysRevX.4.021049
http://dx.doi.org/10.1103/PhysRevX.4.021049
http://dx.doi.org/10.1103/PhysRevX.4.021049
http://dx.doi.org/10.1103/PhysRevLett.105.140503
http://dx.doi.org/10.1103/PhysRevLett.105.140503
http://dx.doi.org/10.1103/PhysRevLett.105.140503
http://dx.doi.org/10.1103/PhysRevLett.105.140503
http://dx.doi.org/10.1103/PhysRevA.83.053852
http://dx.doi.org/10.1103/PhysRevA.83.053852
http://dx.doi.org/10.1103/PhysRevA.83.053852
http://dx.doi.org/10.1103/PhysRevA.83.053852
http://dx.doi.org/10.1103/PhysRevA.84.063810
http://dx.doi.org/10.1103/PhysRevA.84.063810
http://dx.doi.org/10.1103/PhysRevA.84.063810
http://dx.doi.org/10.1103/PhysRevA.84.063810
http://dx.doi.org/10.1038/nphys3050
http://dx.doi.org/10.1038/nphys3050
http://dx.doi.org/10.1038/nphys3050
http://dx.doi.org/10.1038/nphys3050
http://dx.doi.org/10.1103/PhysRev.170.379
http://dx.doi.org/10.1103/PhysRev.170.379
http://dx.doi.org/10.1103/PhysRev.170.379
http://dx.doi.org/10.1103/PhysRev.170.379
http://dx.doi.org/10.1103/PhysRevE.67.066203
http://dx.doi.org/10.1103/PhysRevE.67.066203
http://dx.doi.org/10.1103/PhysRevE.67.066203
http://dx.doi.org/10.1103/PhysRevE.67.066203
http://dx.doi.org/10.1103/PhysRev.55.1218
http://dx.doi.org/10.1103/PhysRev.55.1218
http://dx.doi.org/10.1103/PhysRev.55.1218
http://dx.doi.org/10.1103/PhysRev.55.1218
http://dx.doi.org/10.1103/PhysRevA.89.033820
http://dx.doi.org/10.1103/PhysRevA.89.033820
http://dx.doi.org/10.1103/PhysRevA.89.033820
http://dx.doi.org/10.1103/PhysRevA.89.033820


LETTERS
PUBLISHED ONLINE: 17 AUGUST 2014 | DOI: 10.1038/NPHYS3050

Protecting a spin ensemble against decoherence
in the strong-coupling regime of cavity QED
S. Putz1,2†, D. O. Krimer3†, R. Amsüss1, A. Valookaran1, T. Nöbauer1,4, J. Schmiedmayer1, S. Rotter3*
and J. Majer1,2*
Hybrid quantum systems based on spin ensembles coupled to
superconducting microwave cavities are promising candidates
for robust experiments in cavity quantum electrodynamics
(QED) and for future technologies employing quantum me-
chanical e�ects1–4. At present, the main source of decoherence
in these systems is inhomogeneous spin broadening, which
limits their performance for the coherent transfer and storage
of quantum information5–7. Here we study the dynamics of
a superconducting cavity strongly coupled to an ensemble
of nitrogen–vacancy centres in diamond. We experimentally
observe how decoherence induced by inhomogeneous broad-
ening can be suppressed in the strong-coupling regime—a
phenomenon known as ‘cavity protection’5,7. To demonstrate
the potential of this e�ect for coherent-control schemes, we
showhowappropriately chosenmicrowave pulses can increase
the amplitude of coherent oscillations between the cavity and
spin ensemble by two orders of magnitude.

The processing of quantum information requires special devices
that can store and manipulate quantum bits. Hybrid quantum sys-
tems2 combine the advantages of different systems to overcome their
individual physical limitations. In this context superconducting mi-
crowave cavities have emerged as ideal tools for realizing strong
coupling to qubits3,4,8–12 for the transfer of excitations on the single-
photon level13,14. For the storage of quantum information the neg-
atively charged nitrogen–vacancy (NV) centres in diamond show
great potential, especially owing to their long coherence times (up
to one second15) and to the combination of microwave and optical
transitions which makes them an easily accessible and controllable
qubit16. Coherently passing quantum information between such a
spin and a cavity requires that they are strongly coupled to each
other. As has recently been shown4,10–12, this limit can be reached
by collective coupling to a large spin ensemble, in which case the
coupling strength is increased by the square root of the ensemble
size. However, this collective coupling comes with a considerable
downside: in a solid-state environment a spin is always prone
to inhomogeneous broadening. In particular, for an ensemble of
NV centres, magnetic dipolar interaction with excess nuclear and
electron spins in the diamond crystal leads to an inhomogeneous
broadening of the spin transition17, which acts as the dominant
source of decoherence. Several approaches, including echo-type
refocusing techniques18,19, have been suggested to overcome this
limitation. Here we will concentrate on recent theoretical proposals
which rely on the specific shape of the inhomogeneous spectral
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Figure 1 | Experimental set-up. a, The superconducting coplanar waveguide
resonator with the diamond on top is cooled to∼25 mK in a dilution
refrigerator. In our homodyne detection measurements, the input
microwave signal is split into two paths, both serving as a reference signal
as well as for testing and controlling our experiment. Outside the cryostat
both signal paths are combined by a frequency mixer and the quadratures I
and Q are recorded with a fast analog-to-digital converter (ADC) with
subnanosecond time resolution. AWG: arbitrary waveform generator.
b, Photograph of a superconducting microwave cavity with an enhanced
neutron-irradiated type Ib synthetic diamond (black) on top, encased in a
gold-plated copper sample box.

spin distribution ρ(ω) of the NV centre ensemble. In our explicitly
time-dependent study we will demonstrate the so-called ‘cavity-
protection effect’5,7, which was predicted in these proposals but has
remained so far unobserved.

Our experiment is performed in a standard dilution refrigerator
with the corresponding set-up being sketched in Fig. 1a and a
photograph of the resonator with a synthetic diamond on top
shown in Fig. 1b. To avoid thermal excitations we cool the entire
set-up to a temperature of 25mK, where the estimated thermal
spin polarization is 99%. By applying an external magnetic field
|B| = 9.4 mT through a set of two superconducting Helmholtz
coils we Zeeman tune the NV spin ensemble into resonance
with the cavity. Our resonator has a fundamental resonance at
ωc/2π=2.6899GHzwith a quality factor ofQ=3,060. To excite and
probe the coupled systemwe inject microwave pulses into the cavity
and perform time-resolved transmission spectroscopy by a fast
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Figure 2 | Time domain measurements of the cavity transmission. a, Transmission of a rectangular microwave (MW) pulse through the cavity versus time
and probe frequency ωp (the spins are in resonance with the cavity, ωs=ωc). The observation of strong mode-splitting into the two hybridized modes
|9±〉≈

1
√

2
(|0〉c|1〉s±|1〉c|0〉s) (see dark red enhancements split byΩR/2π= 19.2 MHz) confirms that the system is deep in the strong-coupling regime.

b, The dynamics at the resonant probe frequency ωp=ωs=ωc (white dashed line in a) is compared with the theoretical prediction for the cavity probability
amplitude |A(t)|2 (experiment: black: theory: red). Excellent agreement is achieved when incorporating the correct non-Lorentzian spectral spin
distribution. After switching on the pulse, the system exhibits damped Rabi oscillations, with frequencyΩR, that equilibrate at a stationary state. After
switching o� the pulse, the cavity amplitude first decays from the stationary state and then features a pronounced overshoot corresponding to a strongly
non-Markovian release of the energy stored in the spin ensemble back into the cavity.

homodyne detection set-up with subnanosecond time resolution.
The number of microwave photons in the cavity remains at or
below∼106, which is very low compared with the number of∼1012
NV spins involved in the coupling, ensuring that the Holstein–
Primakoff20 approximation is valid for describing our experiments.
As a result of this approximation, the excitations in the system
can be treated as non-interacting quasiparticles5 and the dynamics
for the ∼106 photons in our system is equivalent to that of a
corresponding single-photon experiment as relevant for quantum
information processing (see Supplementary Methods Section II).

Our starting point to account for the dynamics of a single-
mode cavity coupled to a spin ensemble is the Tavis–Cummings
Hamiltonian21, which reads in the rotating wave approximation

H=~ωca†a+
~
2

N∑
j

ωjσ
z
j + i~

N∑
j

[
gjσ−j a

†
−g ∗j σ

+

j a
]

− i~
[
η(t)a†e−iωpt−η(t)∗aeiωpt

]
where a† and a are standard creation and annihilation operators
of the cavity mode and σ±j , σ z

j are the Pauli operators associated
with each individual spin. The first and second terms stand for
the uncoupled resonator with frequency ωc and for the spin
ensemble with frequencies ωj, centred around ωs, respectively. The
third and the last terms describe the cavity–spin interaction with
coupling strength gj as well as the driving electromagnetic field
injected into the cavity with amplitude η(t) and frequency ωp.
The collective coupling to a large number of spins allows us to
enter the strong-coupling regime of QED, for which the interaction
term is commonly reduced to a collective term22 Ω(S−a†

− S+a),
where the collective spin operators read S± = 1

√
N

∑N
j σ

±

j . The
prefactor Ω2

=
∑N

j g 2
j stands for an effective coupling strength,

which scales up a single cavity–spin interaction, typically on the
order of gj/2π ∼ 12 Hz, by a factor

√
N (refs 3,4,23). In this

formulation the effective spin waves that are excited by the cavity
mode can be identified as superradiant collective Dicke states which
are effectively damped by the coupling to subradiant states in the
ensemble13,24. To accurately describe the corresponding dynamics
we also need to take into account the specific profile of the
spectral spin distribution7 ρ(ω)=

∑
j g 2

j δ(ω−ωj)/Ω
2. We achieve

this by setting up a Volterra integral equation (see Supplementary
Methods), A(t)=

∫ t
0dτ
∫
dω K(ρ(ω); t − τ)A(τ )+ F(t), for the

cavity amplitude A(t) = 〈a(t)〉. This includes a memory-kernel
K(t − τ), responsible for the non-Markovian feedback of the NV
ensemble on the cavity, and the function F(t), which describes
the contribution from an external drive and from the initial spin
excitation. In the following, the cavity amplitude |A(t)|2, calculated
with this approach for stationary and pulsed driving fields, will
be compared to its experimental counterpart—that is, the time-
resolved microwave intensity measured in transmission through
the cavity.

First, to demonstrate that our experiment is in the strong-
coupling regime (having ωs=ωc) we apply a rectangular microwave
pulse which is sufficiently long compared with the cavity
decay rate κ , total decoherence rate Γ and coupling strength
Ω (800 ns�1/2κ=199 ns, 1/Γ =53 ns, π/Ω=58 ns) to drive the
system into a steady statewith varying probe frequencyωp. Figure 2a
shows that two effective eigenstates (polaritons) of the coupled
system emerge in the transmission, |9±〉≈ 1

√
2 (|0〉c|1〉s±|1〉c|0〉s),

corresponding to the symmetric and antisymmetric superposition
of the cavity and spin eigenstates, respectively. Strong coupling
is secured because the Rabi splitting between these states
ΩR/2π=19.2 MHz is substantially larger than the total decay rate
of the system Γ/2π=3.0 MHz (full-width at half-maximum). The
latter consists of a cavity decay rate, κ/2π= 0.4 MHz (half-width
at half-maximum), as well as of a spin decay rate which contains a
negligibly small spin dissipation γ→0 and a dominant contribution
from the inhomogeneous broadening of the spin ensemble. Detailed
spectroscopic measurements of the stationary transmission6 reveal
that the spectral function ρ(ω) which accurately captures the
broadening is neither Lorentzian nor Gaussian, but has the
intermediate form of a q-Gaussian6 (see Supplementary Methods
Section I). As shown in Fig. 2b, our explicitly time-dependent
theoretical description yields excellent quantitative agreement
with the experimental data, using such a q-Gaussian distribution
function with a linewidth of γq/2π = 9.4MHz (full-width at
half-maximum), a shape parameter q = 1.39 and an effective
coupling strength 2 ·Ω/2π = 17.2 MHz. After turning on and
switching off the microwave pulse, coherent Rabi oscillations occur
between the cavity and the spin ensemble, which we reproduce
accurately, including their damping. Interestingly, the first Rabi
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Figure 3 | Characterization of the decay dynamics as a function of
coupling strength. For weak coupling, the decay rate Γ of the cavity
probability amplitude, |A(t)|2, increases as a function of the coupling
strengthΩ . For strong coupling, this trend reverses, showing a protection of
the system against decoherence. Black symbols: experimentally observed
decay rates from the steady state. Red symbols: decay rates extracted from
the full numerical calculations. Orange curve: decay rate,
Γ =2[κ+πΩ2ρ(ωs)], derived under the Markovian approximation. Green
curve: characteristic decay rates, Γ1,2=∆+κ±

√
(∆−κ)2−4Ω2 under

the assumption of a Lorentzian distribution of the spin density. Magenta
curve: analytical estimate of Γ =κ+πΩ2ρ(ωs±Ω) in the very
strong-coupling regime. The background colour indicates at which coupling
strength the system undergoes a transition from the Markovian (white) to
the non-Markovian (grey) regime. The error bars correspond to the minimal
and maximal values of the estimated decay rates from the experimental
data. As no Rabi oscillations occur in the Markovian regime, the values for
the decay rate can be determined more accurately in this limit.

peak shows a pronounced overshoot after switching off the
microwave drive, at which the energy stored in the spin ensemble
is coherently released back into the cavity. These oscillations
are a hallmark of the non-Markovian character of the system
dynamics in the strong-coupling regime, for which an accurate
knowledge of the memory-kernelK(t−τ) in our Volterra equation
is essential.

Our hybrid cavity–spin system can not be modelled by two
coupled damped harmonic oscillators as in the case of a purely
Lorentzian spin distribution. The spectral profile of a q-Gaussian
has marked consequences on the dynamics in the strong-coupling
regime: in particular, for spectral distributions ρ(ω) with tails that
fall off faster than a Lorentzian lineshape (∝1/ω2), an increasing
coupling strength was predicted to lead to a reduction of the
decay rate Γ and to protect the system against decoherence—
hence the name ‘cavity-protection effect’5,7. In a nutshell, ‘cavity
protection’ can be understood as follows: in the strong-coupling
regime, the cavity couples to a set of superradiant states forming
hybridized energy levels split by ~ΩR. The resulting polariton states
are coupled to subradiant spin-wave modes acting as the main
source of decoherence, and the total decay rate depends on the
energetic gap between the polaritons and the subradiant states. If
the spectral profile of the inhomogeneous spin distribution decays
sufficiently fast for increasing gap size, an energetic decoupling of
the superradiant polaritons from the subradiant spin-wave modes
occurs, leading to a suppressed damping of the polaritons. Although
the origin of this intriguing effect can also be understood on the
basis of an ensemble of coupled classical oscillators5,7, the important
point to note is that it also survives on the level of single-photon
excitations (see Supplementary Methods Section II).

As the tails of our spin distribution satisfy the required fast decay,
we now have the possibility to probe this exceptional behaviour
in the experiment. We measure the decay rate Γ (Ω) of the cavity
amplitude after driving the system for different coupling strengths
Ω into steady state using a sufficiently long rectangular pulse (as
in Fig. 2b, see Methods). The values of Γ (Ω), as determined
by the slope of the temporal decay after switch off, are shown
in Fig. 3. We find the decay rate to vary over almost one order
of magnitude in a strongly non-monotonic fashion: in the weak-
coupling regime the decay rate Γ increases with growing coupling
strength Ω as a result of the Purcell effect25 as the cavity mode
increasingly couples to the spin ensemble. Entering the strong-
coupling regime, this trend reverses and Γ decreases with growing
Ω . To highlight this remarkable phenomenon, we also plot in
Fig. 3 the behaviour for a Lorentzian spin distribution, for which
Γ (Ω) is constant in the strong-coupling limit. Performing a Laplace
transform of our Volterra equation we find that in the limit of
very strong coupling (Ω→∞) the decay rate takes the following
closed analytical form Γ =κ+πΩ2ρ(ωs±Ω) (in agreement with
a stationary analysis7). Whereas the maximally reachable value of
Ω/2π= 8.6 MHz in our device already leads to a considerable
reduction of Γ by 50% below its maximum, our numerical results
(Fig. 3) suggest a further reduction of the decay rate with increasing
coupling strength by an order of magnitude. We predict that a
three times higher Ω could be achieved by filling up the cavity
with diamond and by further increasing the NV density. Having
the mode volume entirely occupied with NV centres, a factor of
two enhanced NV concentration would already bring us close to
exploiting the full potential of the cavity-protection effect. We
estimate that such an increased NV concentration would cause a
mean NV–NV interaction strength of 120 kHz, which is still small
enough to have only a negligible influence on the dynamics of
our system.

In a next step, we demonstrate that the ‘cavity-protection
effect’ can also be employed for the realization of coherent-
control schemes. In particular, we address a central question when
dealing with coherently driven spin ensembles—namely, how to
achieve high excitation levels in the spin ensemble with limited
driving powers18,26. In a simplified picture of two coupled harmonic
oscillators this can be achieved by a drive modulated with the
inverse of the effective coupling strength. To realize this for the
non-Lorentzian spectral spin distribution of our ensemble a pulsed
driving is required to match the Rabi frequency ΩR rather than
the effective coupling strength 2 Ω , which quantities are here
quite different from each other. We thus probe our set-up by a
driving field with a carrier frequency ωp=ωc=ωs and a periodic
modulation with tunable period τ . Realizing the latter with a
simple periodic sign-change of the carrier signal, we find that
this driving scheme produces giant oscillations in the transmission
(Fig. 4a) corresponding to a coherent exchange of energy between
the cavity and the spin ensemble. Amaximum oscillation amplitude
occurs exactly at the point where the modulation period τ

coincides with the inverse of the Rabi splitting 2π/ΩR. Note that
at this resonant driving the steady-state oscillation amplitude in
the transmission signal (Fig. 4b) exceeds the stationary amplitude
(Fig. 2b) by two orders of magnitude, although the net power
applied to the cavity is exactly the same in both cases. Our approach
demonstrates how to sustain coherent oscillations and how to
reach considerably high excitation amplitudes of the spin ensemble
without using strong driving powers. For comparison, we also
plot in Fig. 4b the results both for a q-Gaussian as well as for a
Lorentzian spin density, which clearly shows the substantially lower
excitation amplitudes for the Lorentzian case. This clear signature
of the ‘cavity-protection effect’ paves the way for the realization
of sophisticated coherent-control schemes in the strong-coupling
regime of QED.
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Figure 4 | Enhancement of the cavity transmission intensity by pulsed driving. a, The cavity transmission of eleven successive rectangular microwave
pulses with carrier frequency ωp=ωc=ωs, phase-switched by π, as a function of time and pulse duration τ (see top panel for the pulse shape).
b, Dynamics at the largest enhancement of the cavity transmission, corresponding to a pulse duration of τ=52 ns (indicated by the white dashed line in a)
equal to the Rabi period TR=2π/ΩR. After switching o� the probe signal the system settles back to the ground state through damped Rabi oscillations.
Excellent agreement between experiment (black curve) and theory (red curve) is found, using the same system parameters as in Fig. 3. A Lorentzian spin
distribution in the theoretical calculations (green curve) leads to a considerably smaller enhancement owing to the absence of the cavity-protection e�ect.

Methods
The cavity is an overcoupled λ/2 resonator, made out of 200 nm thick sputtered
niobium on a 330 µm thick sapphire substrate, structured by optical lithography
and reactive ion etching. The diamond sample is a commercially available type Ib
high-pressure high-temperature diamond (HPHT) with a size of
4.5×2.25×0.5mm3 and two polished (100) surfaces. The crystal contains an
initial concentration of 200 ppm nitrogen and has a natural abundance of 13C
nuclear isotopes. We achieve a total density of ∼6 ppm NV centres by 50 h of
neutron irradiation with a fluence of 5×1017 cm−2 and by annealing the crystal
for 3 h at 900 ◦C, resulting in a conversion efficiency from initial nitrogen to NV
centres of 3%. The diamond sample has been characterized by means of a
room-temperature confocal laser scanning microscope, allowing us to measure
the NV density and the zero-field splitting parameters D and E by optically
detected magnetic resonance27. Residual nitrogen is incorporated in the
diamond mainly as substitutional single defect centres, which also act as
paramagnetic impurities with S=1/2 and thus form the main source of
inhomogeneous broadening.

The NV centre is a paramagnetic impurity which consists of a substitutional
nitrogen atom and an adjacent vacancy in the diamond lattice. The energy level
structure features an electron spin triplet (S=1) as its ground state28. Owing to
negligible direct NV–NV interactions, it can be described, to lowest order, by the
Hamiltonian29, H/h=DS2z+E(S2x−S2y)+µBS with S=(Sx ,Sy ,Sz ), D=2.877GHz,
E=7.7MHz and µ=28MHzmT−1, providing us with an estimate for the mean
spin transition frequency ωs. The zero-field splitting term D=2.877GHz
corresponds to 138 mK, which is high compared with the temperature of 25mK
at which the experiments are performed and allows us to thermally polarize the
NV spins up to 99%. In the diamond lattice four crystallographic orientations of
the NV defect are possible. Our diamond sample has a (100) surface orientation.
We apply a d.c. magnetic field of 9.4mT to Zeeman tune the spins into resonance
with the cavity, which is applied in the plane of the resonator and therefore in the
(100) plane of the crystal. We rotate the magnetic field direction by 22.5◦ in the
plane, at which only two subensembles are degenerate. The external magnetic
field leads, on the one hand, to a Zeeman splitting of subensembles such that the
maximal possible ensemble–cavity coupling strength is reduced by a factor of

√
2.

On the other hand, it narrows the width of the spectral spin distribution induced
by a misalignment of the applied external magnetic field with respect to the
crystallographic frame.

For the application of short microwave pulses with adjustable phase and
power we use a frequency mixer controlled by an arbitrary waveform generator
(AWG). The microwave signal passes the cryostat and is attenuated by −60 dB
when reaching the resonator. The transmitted signal is fed into a circulator and
amplified on the 4K stage. Using a homodyne detection scheme, the transmitted
and amplified microwave signal is mixed with the reference signal and both
quadrature signals I and Q are recorded by a fast analog-to-digital converter with
2 GS s−1 sampling frequency. The AWG repeats the pulse sequence and 106 single
traces are averaged. From the two quadratures I and Q the transmitted
microwave intensity |A(t)|2 is calculated and plotted in Figs 2 and 4. Voltage
fluctuations give a standard deviation of ±1.02×10−5 (V) on the quadratures I

and Q. The squared steady-state amplitude of the cavity transmission (Fig. 2b)
gives a mean signal of |A|2=1.44×10−7±6.85×10−9 (V2). To reduce the
coupling strength (Fig. 3) we repeatedly pump the resonator with high power and
a long microwave pulse, corresponding to ∼2.5×107 microwave photons in the
cavity. For this measurement power, a non-negligible number of NV spins gets
excited, leading to a reduced number of ground-state spins coupled to
the cavity.
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I. VOLTERRA EQUATION FOR THE CAVITY AMPLITUDE

We start from the Hamiltonian of the main article and derive the Heisenberg operator

equations for the cavity and spin operators (h̄ = 1), ȧ = i[H, a]− κa, σ̇−
k = i[H, σ−

k ]− γσ−
k ,

respectively. Here κ and γ stand for the total cavity and spin losses, respectively. As

was shown already in earlier work1,2 the noise operators can be neglected when considering

only expectation values, to which they do not contribute. We also note explicitly that in

our calculations the influence of a finite temperature can be disregarded. At the minute

temperatures at which the experiment is carried out (∼ 25 mK) we have kBT � h̄ωs,

resulting in an occupation probability of the ensemble ground state of 99%. Since the

number of excited spins remains very small compared to the ensemble size, even with the

weak external driving that we use for all the results reported in the main article, we are

allowed to apply the commonly used Holstein-Primakoff-approximation, 〈σz
k〉 ≈ −1, when

writing down the following set of equations for the operator expectation values in the frame

rotating with the probe frequency ωp. Denoting A(t) ≡ 〈a(t)〉 and Bk(t) ≡ 〈σ−
k (t)〉, we end

up with the following set of first-order ODEs with respect to the cavity and spin amplitudes

Ȧ(t) = − [κ+ i(ωc − ωp)]A(t) +
∑
k

gkBk(t)− η(t), (1a)

Ḃk(t) = − [γ + i(ωk − ωp)]Bk(t)− gkA(t). (1b)

Note, that the size of our spin ensemble is very large (typically N ∼ 1012) and individual

spins are distributed around a certain mean frequency ωs. We can thus go to the continuum

limit by introducing the continuous spectral density as ρ(ω) =
∑

k g
2
kδ(ω − ωk)/Ω

2 (see,

e.g. 1), where Ω is the collective coupling strength of the spin ensemble to the cavity and
∫
dωρ(ω) = 1. In what follows we will replace any discrete function F (ωk) by its continuous

counterpart, F (ω): F (ωk) → Ω2
∫
dωρ(ω)F (ω). By integrating Eq. (1b) in time, each

individual spin amplitude, Bk(t), can formally be expressed in terms of the cavity amplitude,

A(t). By plugging the resulting equation into Eq. (1a) and assuming that initially all spins

are in the ground state, Bk(t = 0) = 0, we arrive at the following integro-differential Volterra

equation for the cavity amplitude (ωc = ωs)

Ȧ(t) = −κA(t)− Ω2

∫
dωρ(ω)

t∫

0

dτe−i(ω−ωc−iγ)(t−τ)A(τ)− η(t), (2)

2

Note that in the ωp-rotating frame the rapid oscillations presented in the original Hamilto-

nian (1) are absent, so that the time variation of η(t) in Eq. (2) is much slower as compared

to 1/ωp.

For a proper description of the resulting dynamics, it is essential to capture the form of

the spectral density ρ(ω) realized in the experiment as accurately as possible. Following 3,

we take the q-Gaussian function for that purpose

ρ(ω) = C ·
[
1− (1− q)

(ω − ωs)
2

∆2

] 1

1− q
, (3)

characterized by the dimensionless shape parameter 1 < q < 3 which yields the form of a

Lorentzian and Gaussian distribution, for q = 2 and for q → 1, respectively. Here C is a

normalization constant which is easily obtained numerically; the full-width at half-maximum

(FWHM) of ρ(ω) is given by γq = 2∆

√
2q − 2

2q − 2
.

In a next step we formally integrate Eq. (2) in time to get rid of the time derivative of

A(t). The resulting double integral with respect to time on the right-hand side is simplified

further by partial integration, so that we obtain again a single integral with respect to time.

Assuming that the cavity is initially empty, A(t = 0) = 0, we finally end up with the

following equation for the cavity amplitude

A(t) =

t∫

0

dτK(t− τ)A(τ) + F(t), (4)

which contains the kernel function K(t− τ),

K(t− τ) = Ω2

∫
dω

ρ(ω)
[
e−i(ω−ωc−i(γ−κ))(t−τ) − 1

]
i(ω − ωc − i(γ − κ))

· e−κ(t−τ), (5)

and the function F(t),

F(t) = −
t∫

0

dτ η(τ) · e−κ(t−τ). (6)

Despite its seemingly simple form, Eq. (4) is not trivial to solve in practice, even numerically.

The reasons are twofold: First, the result of the integration for A(t) at time t depends on

the amplitude A(τ) calculated at all earlier times, τ < t (memory effect). Second, the kernel

function K(t−τ) contains the integration with respect to frequency, which is costly in terms
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of computational time. (Note that such an integration has to be performed for each t and

τ < t.) The smallest possible time scale in our problem is given by T = 2π/ωp ∼ 0.4 ns. To

achieve a very good accuracy of the calculations for the results presented in Figs. 2,4 from

the main article, we solve the equation on a mesh with uniform spacing, choosing a time

step dt ∼ 0.05 ns (see e.g. 4 for more details about the method). The direct discretization

of K(t− τ) on the time interval of the order of µs (typical time of measurements) leads to a

high-dimensional matrix (of a size typically exceeding 104 × 104), which, together with the

integration with respect to frequency, makes the problem computationally intractable by way

of a direct numerical solution. To overcome this problem and to speed up the calculations

drastically, we divide the whole time integration into many successive subintervals, Tn ≤ t ≤

Tn+1, with n = 1, 2, .... Such a time division might, in principle, be implemented arbitrarily

but we choose it to be adapted to our experimental realization. Specifically, the driving

amplitude is unchanged within each subinterval, so that in our case it is given by

ηn =



η n = 1, 3, 5, ...

−η n = 2, 4, 6, ...
. (7)

In this way the result of integration at the n-th time interval, A(n)(Tn+1), enters as

an initial condition for the integration during the (n + 1)-th time interval, A(n+1)(Tn+1).

Finally, we end up with the following recurrence relation (time runs within Tn ≤ t ≤ Tn+1

for n = 1, 2, 3, ...)

A(n)(t) =

t∫

Tn

dτK(t− τ)A(n)(τ) + F (n)(t), (8)

where the kernel function K(t− τ) is defined by Eq. (5) and

F (n)(t) = A(n−1)(Tn)e
−κ(t−Tn) + Ω2e−κ(t−Tn)

∫
dω

ρ(ω)
[
e−i(ω−ωc−i(γ−κ))(t−Tn) − 1

]
i(ω − ωc − i(γ − κ))

· In(ω)−

ηn
κ

·
[
1− e−κ(t−Tn)

]
(9)

Remarkably, the memory about previous events enters both through the amplitude

A(n−1)(Tn) and through the function

In(ω) = e−i(ω−ωp−iγ)(Tn−Tn−1)In−1(ω) +

Tn∫

Tn−1

dτe−i(ω−ωp−iγ)(Tn−τ)A(n−1)(τ). (10)

4

In accordance with the above initial conditions (t = T1 = 0), A(T1) = 0 and I1(ω) = 0.

The above technique allows us to solve Eq. (4) accurately while being very efficient in

terms of computational time. We have tested the accuracy of our numerical results by

varying the discretization both in time and frequency in a wide range obtaining excellent

agreement with the experimental results shown in Figs. 2,4 of the main paper and thereby

confirming the accuracy of our method.
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FIG. 1: a) Red curve: calculated cavity probability amplitude |A(t)|2 versus time t under the action

of an incident long multi-photon pulse of duration 1.65µs with the carrier frequency matching the

resonance condition, ωp = ωc = 2π · 2.6915GHz, and the coupling strength 2Ω = 17.2 MHz

(analogous to Fig. 2b from the main article). Gray (white) area indicates a time interval during

which a pumping signal is on (off). Black curve: Decay from the initial state |1, G〉, for which a

single photon with frequency ωc is in the cavity and all spins are in the ground state. For the sake

of visualisation, the initial probability is rescaled such as to coincide with the steady state value

of the multi-photon signal. b) Same figure as a) with a zoom on the decaying part and with the

ordinate plotted on a logarithmic scale. The asymptotic decay is well described, for both the red

and the black curve, by the exponential function, C e−Γt, with Γ/2π = 3.0MHz taken from Fig. 3

of the main article (see orange dashed curves). This agreement illustrates the applicability of the

cavity-protection effect also for single-photon processes.
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of computational time. (Note that such an integration has to be performed for each t and

τ < t.) The smallest possible time scale in our problem is given by T = 2π/ωp ∼ 0.4 ns. To

achieve a very good accuracy of the calculations for the results presented in Figs. 2,4 from

the main article, we solve the equation on a mesh with uniform spacing, choosing a time

step dt ∼ 0.05 ns (see e.g. 4 for more details about the method). The direct discretization

of K(t− τ) on the time interval of the order of µs (typical time of measurements) leads to a
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of a direct numerical solution. To overcome this problem and to speed up the calculations

drastically, we divide the whole time integration into many successive subintervals, Tn ≤ t ≤

Tn+1, with n = 1, 2, .... Such a time division might, in principle, be implemented arbitrarily

but we choose it to be adapted to our experimental realization. Specifically, the driving

amplitude is unchanged within each subinterval, so that in our case it is given by

ηn =
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. (7)

In this way the result of integration at the n-th time interval, A(n)(Tn+1), enters as

an initial condition for the integration during the (n + 1)-th time interval, A(n+1)(Tn+1).

Finally, we end up with the following recurrence relation (time runs within Tn ≤ t ≤ Tn+1

for n = 1, 2, 3, ...)
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where the kernel function K(t− τ) is defined by Eq. (5) and
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The above technique allows us to solve Eq. (4) accurately while being very efficient in
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varying the discretization both in time and frequency in a wide range obtaining excellent

agreement with the experimental results shown in Figs. 2,4 of the main paper and thereby

confirming the accuracy of our method.
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FIG. 1: a) Red curve: calculated cavity probability amplitude |A(t)|2 versus time t under the action

of an incident long multi-photon pulse of duration 1.65µs with the carrier frequency matching the

resonance condition, ωp = ωc = 2π · 2.6915GHz, and the coupling strength 2Ω = 17.2 MHz

(analogous to Fig. 2b from the main article). Gray (white) area indicates a time interval during

which a pumping signal is on (off). Black curve: Decay from the initial state |1, G〉, for which a

single photon with frequency ωc is in the cavity and all spins are in the ground state. For the sake

of visualisation, the initial probability is rescaled such as to coincide with the steady state value

of the multi-photon signal. b) Same figure as a) with a zoom on the decaying part and with the

ordinate plotted on a logarithmic scale. The asymptotic decay is well described, for both the red

and the black curve, by the exponential function, C e−Γt, with Γ/2π = 3.0MHz taken from Fig. 3

of the main article (see orange dashed curves). This agreement illustrates the applicability of the

cavity-protection effect also for single-photon processes.
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II. CAVITY PROTECTION EFFECT ON THE SINGLE PHOTON LEVEL

In the experiment presented in the main article the number of microwave photons in

the cavity is typically of the order of 106. Here we demonstrate that our main findings on

the cavity protection effect also remain valid when only a single photon is populating the

cavity. For this purpose we start from the Heisenberg equations for the cavity and spin

operators, a(t) and σ−
k (t), which have the same form as those described in Sec. I. We now

assume that the cavity is fed with a single photon and all spins are in the ground state,

|1, G〉 = a†(t = 0)|0〉, where |0〉 stands for the vacuum state. We then let these operator

equations act on the bra- and ket-vectors 〈0| and a†(t = 0)|0〉, respectively, and derive

the corresponding equations for the expectation values. These equations perfectly coincide

with Eqs. (1a,1b) from Sec. I where, however, the amplitudes A(t), B(t) are now given as

A(t) ≡ 〈0|a(t)a†(t = 0)|0〉 and Bk(t) ≡ 〈0|σ−
k (t)a

†(t = 0)|0〉. Note that the variable A(t)

stands here for the probability amplitude for a photon to be in the cavity at time t, if it was

there initially, A(t = 0) ≡ 〈0|a(t = 0)a†(t = 0)|0〉 = 〈1, G|1, G〉 = 1.

We thus find for the single-photon regime the same Volterra equation for the cavity

amplitude, A(t), as we did before for the multi-photon decay process from the steady-

state as considered in the main article (see Fig. 3 there). The only difference lies in the

initial condition, which, in the single-photon case, takes on the simple form A(t = 0) = 1.

However, the asymptotic decay rate Γ is independent of the initial conditions and the cavity

protection effect remains unaffected. To demonstrate this explicitly also numerically, we

compare in Fig. 1 the multi-photon dynamics from the main text with the single-photon

case considered here. At first sight, the decay dynamics look very different in these two

cases, see Fig. 1a), even when the probability |A(t)|2 is rescaled for both cases to coincide

at t = 0. When plotting the decay logarithmically, see Fig. 1b), it becomes clear, however,

that the asympotitic decay constants which are relevant for the cavity protection effect are,

indeed, exactly the same. To conclude, the key insight on the reduction of the decay rate

for increasing collective coupling strength Ω (as following from Fig. 3 of the main article),

remains valid also on the single-photon level.
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Spin ensemble based hybrid quantum systems suffer from a significant degree of decoherence resulting
from the inhomogeneous broadening of the spin transition frequencies in the ensemble. We demonstrate
that this strongly restrictive drawback can be overcome simply by burning two narrow spectral holes in the
spin spectral density at judiciously chosen frequencies. Using this procedure we find an increase of the
coherence time by more than an order of magnitude as compared to the case without hole burning. Our
findings pave the way for the practical use of these hybrid quantum systems for the processing of quantum
information.

DOI: 10.1103/PhysRevLett.115.033601 PACS numbers: 42.50.Ct, 32.30.-r, 42.50.Gy, 42.50.Pq

Hybrid quantum circuits that conflate the advantages
of different physical systems to achieve new device func-
tionalities have recently shifted to the center of attention [1].
This is largely because a new generation of experiments
[2–11] lends encouraging plausibility to the vision of using
such hybrid device concepts to reliably store andmanipulate
quantum information [12–17]. In particular, the recent
achievements in strongly coupling large spin ensembles
to superconducting microwave cavities [2–6,11] hold
promise for combining many of the advantageous features
ofmicrowave technologywith the long spin coherence times
found, e.g., in crystallographic defects of diamond.
Whereas the collective coupling to a whole ensemble of

spins is the key to reach the strong-coupling limit, the
ensemble generally comes with the downside of being
inhomogeneously broadened; i.e., the transition frequen-
cies between different spin levels are slightly different for
each spin. As it turns out, the decoherence resultant from
this broadening is currently the major bottleneck for the
processing of quantum information in these hybrid quan-
tum systems. First attempts at resolving this problem have
meanwhile been put forward: On the one hand, it was
shown that the decoherence is naturally suppressed for very
strong coupling when the spectral spin distribution realized
by the ensemble falls off sufficiently fast in its tails.
Signatures of this so-called “cavity protection effect”
[18,19] have meanwhile also been observed experimentally
[11,20]. To fully bring to bear the potential of this effect
requires, however, going to very high values of the
coupling strength, which are presently difficult to reach

experimentally. On the other hand, sophisticated concepts
for the spectral engineering of the spin density profile have
been proposed [21,22]. These concepts rely, however, on a
strong modification of the intrinsically predefined density
profile that is again very challenging to implement exper-
imentally. In this Letter, we present a method that circum-
vents the problems of both approaches by building on a
very elementary concept that requires only a considerably
reduced experimental effort. Specifically, we demonstrate
that the burning of two judiciously placed spectral holes in
the spin distribution suffices to drastically increase the
coherence properties of the hybrid spin-cavity system.
From the viewpoint of quantum control, our approach
constitutes a new and efficient strategy to stabilize Rabi
oscillations in the strong-coupling limit of cavity QED
[23–25]. Suppressing the detrimental influence of inhomo-
geneous broadening, as suggested in our work, could also
prove to be a key element for the realization of ultranarrow
linewidth lasers [26,27].
To connect our theoretical work directly with the experi-

ment wewill study in the following the recently implemented
case of a superconducting microwave resonator strongly
coupled to an ensemble of negatively charged nitrogen-
vacancy centers in a diamond (see Fig. 1) [2,3,11,20]. Our
starting point is the Tavis-Cummings Hamiltonian (ℏ ¼ 1)
[28], which describes the dynamics of a single-mode cavity
coupled to a spin ensemble in the dipole and rotating-wave
approximation,

H ¼ ωca†aþ 1

2

XN
j

ωjσ
z
j þ i

XN
j

½gjσ−j a† − g�jσ
þ
j a�

− i½ηðtÞa†e−iωt − ηðtÞ�aeiωt�: ð1Þ

Here σþj ; σ
−
j ; σ

z
j are the Pauli operators associated with the

individual spins of frequency ωj. Each spin is coupled with a
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strengthgj to the single cavitymodeof frequencyωc, inwhich
photons are created and annihilated through the operators a†

and a. The probing electromagnetic field injected into the
cavity is characterized by its carrier frequency ω and by the
amplitude ηðtÞ.
Next, we derive the semiclassical equations of motion

using the Holstein-Primakoff approximation [29] (implying
that the condition hσzki ≈ −1 always holds), the rotating-
wave approximation and neglecting the dipole-dipole inter-
action between spins. With these simplifications, which are
well justified for the experiments [11,20] operating at low
input powers of an incoming signal, the equations forAðtÞ≡
haðtÞi and BjðtÞ≡ hσ−j ðtÞi acquire the following form (in
the ω-rotating frame):

_AðtÞ ¼ −½κ þ iðωc − ωÞ�AðtÞ þ
X
j

gjBjðtÞ − ηðtÞ; ð2aÞ

_BjðtÞ ¼ −½γ þ iðωj − ωÞ�BjðtÞ − gjAðtÞ; ð2bÞ

where κ, γ are the dissipative cavity and spin losses,
respectively.
Large spin ensembles (N ∼ 1012 in [11,20]) are best

described by the continuum limit of the normalized
spectral density ρðωÞ ¼ P

N
j g2jδðω − ωjÞ=Ω2. Here Ω ¼

ðPN
j g2jÞ1=2 is an effective coupling strength which is

enhanced by a factor of
ffiffiffiffi
N

p
as compared to a single

coupling strength, gj, so that Ω can reach the values
necessary for the realization of the strong-coupling regime.
The inhomogeneous broadening of the spin frequencies ωj

and coupling strengths gj then lead to a finite-width
distribution ρðωÞ centered around a certain mean frequency
ωs. The specific shape of this spectral density ρðωÞ can
typically be determined by a careful comparison with the
experiment based on stationary [3] or dynamical [11]
transmission measurements. In the following, we will
use the same parameters as in [11,20], taking a

q-Gaussian distribution [3] for ρðωÞ centered around
ωs=2π ¼ 2.6915 GHz, a full-width at half-maximum of
γq=2π ¼ 9.44 MHz and a q parameter of 1.39. The cavity
decay rate κ=2π ¼ 0.4 MHz (half-width at half-maximum)
and the coupling strength Ω=2π ¼ 8.56 MHz.
The starting point for our strategy is the insight that

the non-Markovian dynamics of the spin system, which
is described by ρðωÞ and strongly coupled to the cavity
mode, can be accurately modeled by an integral Volterra
equation for the cavity amplitude AðtÞ [see Eq. (5) below
and [11,20]]. The latter includes a memory kernel, which is
responsible for the non-Markovian feedback of the spin
ensemble on the cavity, so that the cavity amplitude at time
t depends on all previous events τ < t. By performing a
Laplace transform of this Volterra equation [20] or by
carrying out a stationary transmission analysis [18,19],
the total rate of decoherence turns out to be Γ ≈ κ þ
πΩ2ρðωs � ΩÞ in the limit of large coupling strengths,Ω >
Γ and γ → 0. The value of Γ is thus determined by the spin
density ρðωÞ, evaluated close to the maxima of the two
polaritonic peaks, ω ¼ ωs �Ω, split by the Rabi frequency
ΩR ≈ 2Ω due to strong coupling. Our approach is now to
take this relation literally, which is tantamount to saying
that the decoherence rate Γ can be strongly suppressed by
burning two spectral holes into the spin distribution ρðωÞ
right at these two positions, ωh ¼ ωs � Ω, such that
ρðωhÞ ¼ 0. The width of the holes Δh should be very
small, such as to remove only a negligible fraction of the
spins by the hole burning. On the other hand, Δh is limited
from below by the spin dissipation rate, Δh > γ.
To demonstrate the efficiency of our approach explicitly,

we first perform a stationary analysis [ _AðtÞ ¼ _BkðtÞ ¼ 0] of
the transmission TðωÞ through the microwave resonator as
a function of the probing frequency ω. This quantity, which
is directly accessible in the experiment [11,20], provides
direct access to the occupation amplitude of the cavity
[TðωÞ ∝ AðωÞ]. Assuming γ → 0, the transmission TðωÞ
acquires the following form:

TðωÞ ¼ iκ
ω − ωc −Ω2δðωÞ þ i½κ þ πΩ2ρðωÞ� . ð3Þ

This expression is normalized such as to reach the
maximum possible value max ðjTðωÞjÞ ¼ 1 for suitably
chosen ω, κ, and ρðωÞ. The real function δðωÞ is the
nonlinear Lamb shift [30] defined as

δðωÞ ¼ P
Z

∞

0

d ~ωρð ~ωÞ
ω − ~ω

; ð4Þ

where P stands for the Cauchy principal value. In the
reference case taken from the experiment [11,20], ρðωÞ has
no holes, see Fig. 2(a), and the transmission jTðωÞj2
displays the well-resolved double-peak structure typical
for the strong-coupling regime; see Fig. 2(b). If we now

FIG. 1 (color online). Sketch of the studied hybrid quantum
system: a synthetic diamond (black) containing a spin ensemble
(red arrows) coupled to a transmission-line resonator (curved
gray line) confining the electromagnetic field to a small volume.
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burn two narrow holes into the spin density at the relevant
positions ωh ¼ ωs �Ω, see Fig. 2(d), and reevaluate
jTðωÞj2, we observe a more than 50-fold increase in the
corresponding transmission peak values; see Fig. 2(e). This
dramatic change is all the more surprising considering that
the relative number of spins removed from ρðωÞ through
the hole burning is less than 3%.
To understand this behavior it is best to analyze the real

and imaginary parts of the denominator of TðωÞ; see Eq. (3).
For the observed transmission resonances at ω ¼ ωr with a
maximum value of TðωrÞ ¼ 1 to occur, two conditions are
satisfied simultaneously: (i) ðωr − ωcÞ=Ω2 ¼ δðωrÞ and
(ii) ρðωrÞ ¼ 0. Consider condition (i): In the reference case
without holes, see Fig. 2(c), the nonlinear Lamb shift δðωÞ
displays rather smooth variations in the vicinity of the
resonant frequencies ωr, determined by the intersection of
δðωÞ and a straight line ðω − ωcÞ=Ω2. In contrast, for the
case with hole burning, see Fig. 2(f), δðωÞ exhibits rapid
variations around the two resonance points within a very
narrow spectral interval. As a consequence, the resultant
transmission peaks become substantially sharper. Because
of condition (ii) they also dramatically increase in height.
Note that no resonance occurs atω ¼ ωc because ρðωÞ has a
maximumat this point and condition (ii) is strongly violated;
see Figs. 2(c) and 2(f). A close examination of the structure
of TðωÞ shows, furthermore, that the narrow transmission

peaks resultant from the hole burning do not replace the
broad polaritonic peaks present in the reference case, but
rather get to sit on top of them; see Fig. 3(a). As will be
seen below, the different resonance widths in TðωÞ set two
different time scales in the dynamics with, in particular, the
sharp peaks in the transmission giving rise to an asymp-
totically slowly decaying dynamics with a strongly sup-
pressed decoherence.
To explore whether the narrow holes we burnt into the

spectral spin distribution at ωh ¼ ωs �Ω have, indeed, the
optimal location, we now also test all possible other hole
positions symmetrically placed around the maximum of
ρðωÞ at ω ¼ ωs. In Fig. 3(b) we present the numerical
results for TðωÞ as a function of the probe frequency ω and
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FIG. 2 (color online). Comparison of the cavity coupled to the
inhomogeneously broadened spin ensemble without and with
hole burning in the spin density profile (left and right panels,
respectively). (a),(d): The q-Gaussian spin density distribution,
ρðωÞ, without and with hole burning at ωh ¼ ωs � Ω. Both holes
are of equal width, Δh=2π ¼ 0.7 MHz, and have a Fermi-
Dirac profile. (b),(e): Transmission TðωÞ without and with hole
burning in ρðωÞ (note different y axes scale). (c),(f): The
corresponding nonlinear Lamb shift δðωÞ. Filled circles label
resonance values ωr of the transmission TðωÞ occurring at the
intersections between the Lamb shift δðωÞ and the dashed line
ðω − ωcÞ=Ω2. At empty circles such intersections are nonreso-
nant (see text).

FIG. 3 (color online). Transmission through the cavity TðωÞ
versus probe frequency ω for different locations of the holes, ωh,
in the spin density profile, ρðωÞ (the width of the holes is
Δh=2π ¼ 0.7 MHz). (a) Red (gray) curve: jTðωÞj2 in lin-log
scale versus ω for ωh ¼ ωs � Ω. Black curve: Transmission in
the absence of hole burning. (b) Yellow (light gray) areas mark
the most pronounced peaks in jTðωÞj2 in the presence of hole
burning. Blue (gray) areas stand for the secondary polaritonic
peaks which stem from the case without hole burning. Dashed
arrows designate the distance ΩR between polaritonic peaks. The
white vertical cut corresponds to the transmission shown in (a).
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of different hole locations ωh ¼ ωs � ω̄ scanned between
ω̄ ¼ 0 and ω̄ ¼ 16 MHz: While for large hole spacings
(ω̄≳ 11.5 MHz) the effect of holes is negligible, in the
interval 0.8 MHz≲ ω̄≲ 11.5 MHz we always find two
sharp peaks superimposed on the two polaritonic peaks
approximately at the hole positions. Close to ωh ¼ ωs �Ω,
these peaks are most pronounced and reach unity. In the
limit when the holes are burnt very close together
(ω̄≲ 0.8 MHz) the sharp peaks merge into a single one,
located directly at the central frequency ωs with a trans-
mission maximum reaching again unity in the limit of
ωh → ωs [see the yellow cusp in Fig. 3(b)]. Using the
symmetry of ρðωÞ with respect to ωs, this behavior can also
be proven analytically (not shown). To check the robustness
of our method we also tested different functional forms for
the hole profiles (Fermi-Dirac, q-Gaussian, and rectangular
distributions) and found qualitatively similar results to the
Fermi-Dirac form employed for all of the above figures.
To reach our ultimate goal of understanding the influence

of the spectral hole burning on the resultant dynamics, we
now study the time evolution of AðtÞ explicitly for the
resonant case ω ¼ ωc ¼ ωs. The expression for the corre-
sponding Volterra equation can be derived from Eqs. (2a)
and (2b) (see [20] for details),

_AðtÞ ¼ −κAðtÞ

−Ω2

Z
dωρðωÞ

Z
t

0

dτe−iðω−ωc−iγÞðt−τÞAðτÞ − ηðtÞ:

ð5Þ

To prove that our predictions are valid not only in the
semiclassical but also in the quantum case, we consider the
case when all spins are initially in the ground state and
the cavity mode a contains initially a single photon, j1;↓i.
It can be shown that the probability for a photon to reside
in the cavity at time t > 0, NðtÞ ¼ h1;↓ja†ðtÞaðtÞj1;↓i,
reduces to NðtÞ ¼ jh0;↓jaðtÞj1;↓ij2 ¼ jAðtÞj2, where AðtÞ
is the solution of Eq. (5) with the initial condition
Aðt ¼ 0Þ ¼ 1 [external drive ηðtÞ ¼ 0]. For the case with-
out hole burning, this solution is represented by the damped
Rabi oscillations [see Fig. 4(a)] found already previously
[11,20]. By burning narrow holes in ρðωÞ at ωh ¼ ωs � Ω
(immediately before t ¼ 0), we observe very similar
transient dynamics, which is followed, however, by a
crossover to Rabi oscillations with a much slower asymp-
totic decay [see Fig. 4(b)]. Quite remarkably, the total
decay rate Γ in this asymptotic time limit can even be
substantially smaller than the cavity decay rate κ alone.
This is all the more surprising since κ was identified as the
minimally reachable value for Γ in recent studies on the
cavity protection effect [11,19,20]. Apparently a new type
of physics is at work here: Although the system is in the
strong-coupling regime, the two spectral holes slow down
the leakage of the energy stored in the spin ensemble back

into the cavity. In particular, when being even slower than
the inverse of the cavity decay rate κ, this sets a new global
time scale for Γ, corresponding to the width of the sharp
resonance peaks which we identified before in Fig. 3(a).
From the mathematical point of view such a slow asymp-
totic behavior is associated with the contribution of two
poles in the Laplace transform of Eq. (5) [20], which appear
when the holes in ρðωÞ reach a critical depth. The pole
contributions also stabilize the long-time behavior when
the holes are shifted away from the polaritonic peaks [see
Fig. 3(b)], but the optimal hole positions remain close to
the polaritonic peaks. Note that despite the considerable
photon loss ½NðtÞ ≪ 1� for long times, the phase coherence
is very well preserved here, a clear signature of which is
the stable form of the Rabi oscillations. In this way a high
“visibility” can be achieved, as required for the efficient
processing of quantum information [31].
To demonstrate the efficiency of the hole burning effect

also for quantum control schemes, we pump the cavity by a
sequence of π phase-switched rectangular pulses, each with
a duration corresponding to the Rabi period, τ ¼ 2π=ΩR
and a carrier frequency ω ¼ ωc ¼ ωs. As shown in [11],
this procedure is very well suited to feed energy into the
strongly coupled cavity-spin system, leading to giant
oscillations of both spin and cavity amplitude [see left
parts of Figs. 4(c) and 4(d)]. Not only do we observe that
these driven oscillations are more pronounced when burn-
ing holes at ωh ¼ ωs �Ω, but we find, in particular, that
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FIG. 4 (color online). (a),(b): Decay of the cavity occupation
NðtÞ ¼ h1;↓ja†ðtÞaðtÞj1;↓i from the initial state, for which a
single photon with frequency ωc resides in the cavity and all spins
are unexcited. The asymptotic decay Ce−Γt with and without hole
burning (see red lines) is determined by the constants Γ=2π ¼
3 MHz in (a) and a drastically reduced Γ ¼ 0.42κ ¼ 2π0.17 MHz
in (b). (c),(d): Dynamics of jAðtÞj2 under the action of 11
successive rectangular microwave pulses of duration corre-
sponding to the Rabi period, τ ¼ 2π=ΩR ¼ 52 ns, phase
switched by π (every second pulse is shown as a vertical gray
bar). Also here the asymptotic decay is much slower due to the
presence of the holes. In all panels the holes in ρðωÞ have a width
Δh=2π ¼ 1.4 MHz and are burnt at t ¼ 0 at ωh ¼ ωs �Ω.
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the Rabi relaxation oscillations setting in after switching off
the driving field are dramatically more long lived than in
the case without holes [compare right parts of Figs. 4(c)
and 4(d)]. These results confirm the robustness as well as
the general applicability of our approach for various
coherent-control schemes in the strong-coupling regime
of cavity QED.
In summary, we present an efficient method to suppress

the decoherence in a single-mode cavity strongly coupled
to an inhomogeneously broadened spin ensemble. By
burning narrow spectral holes in the spin density at
judiciously chosen positions, the total decay rate is dra-
matically decreased to values that may even lie below the
dissipation rate of the bare cavity. Experimentally, our
approach can be implemented by exposing the cavity to
high-intensity microwave signals with spectral components
near the desired hole positions. Because of the strong
driving the spins at these frequencies will equally populate
their ground and excited state and will thus be effectively
removed from the coupling process with the cavity.
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Spectral hole burning and its application in
microwave photonics
Stefan Putz1,2,3*†, Andreas Angerer1,2†, Dmitry O. Krimer4, Ralph Glattauer1, William J. Munro5,6,
Stefan Rotter4, Jörg Schmiedmayer1,2 and Johannes Majer1,2*

Spectral hole burning, used in inhomogeneously broadened emit-
ters, is a well-established optical1 technique, with applications
from spectroscopy to slow light2 and frequency combs3. In micro-
wave photonics4, electron spin ensembles5,6 are candidates for
use as quantum memories7 with potentially long storage
times8. Here, we demonstrate long-lived collective dark states9

by spectral hole burning in the microwave regime10. The coher-
ence time in our hybrid quantum system (nitrogen–vacancy
centres strongly coupled to a superconducting microwave
cavity) becomes longer than both the ensemble’s free-induction
decay and the bare cavity dissipation rate. The hybrid quantum
system thus performs better than its individual subcomponents.
This opens theway for long-lived quantummultimodememories,
solid-state microwave frequency combs, spin squeezed states11,
optical-to-microwave quantum transducers12 and novel metama-
terials13. Beyond these, new cavity quantum electrodynamics
experiments will be possible where spin–spin interactions and
many-body phenomena14 are directly accessible.

Quantum information science and metrology rely on the coher-
ent manipulation of two-level systems, which allow the storage of
single excitations in high-capacity multimode memories15. The
manipulation of information within those memories has proven
to be difficult, and so the hybridization of distinct quantum
systems to form quantum metamaterials offers a realistic way
forward. Such ‘hybrid’ quantum systems have become a key strategy
in microwave circuit cavity quantum electrodynamics (cQED)4,16.
As an example we discuss the hybridization of superconducting
devices with electron spin ensembles5,6,17 and show their potential
to bypass individual weaknesses while harnessing their strengths.
Electrical circuits offer easy manipulation and processing18,19, yet
have limited coherence properties, while single electron spins in
semiconductor crystals can have coherence times of up to almost
one hour20 but are hard to manipulate. In early experiments, coherent
energy exchange on the single-photon level and basic memory
operations7 were demonstrated in this context21.

An outstanding challenge in solid-state-based hybrid systems is
the suppression of spin dephasing induced by the host material5,6,17.
However, the realization of true multimode memories is only poss-
ible in the presence of inhomogeneous spectral broadening and
so their short memory times have to be actively recovered by echo
refocusing techniques21 or improved by the cavity protection
effect22. In this Letter, we present an alternative approach based
on collective dark states9,23 that circumvents the necessity for recov-
ery protocols and substantially improves the coherence times
beyond the limit given by the cavity and spin ensemble.

Our hybrid system consists of a superconducting resonator with
a diamond crystal containing an ensemble of negatively charged
nitrogen–vacancy (NV) centre electron spins magnetically
coupled to it (Fig. 1a,b). The device was placed in a dilution refriger-
ator operating at temperatures <25 mK. The resonator was charac-
terized at zero external magnetic field by transmission
spectroscopy and was determined to have a fundamental resonance
at ωc/2π = 2.691 GHz with a cavity linewidth of κ/2π = 440 ± 10 kHz
and quality factor of Q = 3,130. The diamond crystal has a NV con-
centration of ∼4 × 1017 cm–3, meaning that the macroscopic spin
ensemble in the cavity mode volume consists of N ≈ 1 × 1012 NV
spins thermally polarized (≥99%) at our refrigerator’s base tempera-
ture. These electron spins were Zeeman-shifted into resonance with
the cavity by applying an external d.c. magnetic field (Fig. 1c).

We observed a mode splitting and Rabi oscillations with
frequency ΩR/2π = 21.3 ± 0.1 MHz and linewidth/decay rate of
Γ/2π = 1.45 ± 0.05 MHz on probing the system with low intensities
of <1 × 10–6 photons per spin in the cavity (Supplementary Fig. 1).
Although the single spin–cavity coupling strength, gj, is rather
small (≲10 Hz) (ref. 6), the large number N of weakly dipole–
dipole interacting spins allows us to deeply enter the strong coupling
regime (ΩR≫ Γ≫ κ) with cooperativity C ≈ 26. Such an ensemble of
individual two-level systems coupled to a single-mode cavity is
described by the Tavis–Cummings model, which in the rotating
wave approximation can be written as

H = h−ωca
†a +

h−
2

∑N
j= 1

ωjσ
z
j + h−

∑N
j= 1

gj σ
−
j a

† + σ+j a
[ ]

(1)

with the cavitymodes’ bosonic creation (annihilation) operators a† (a)
operating at frequency ωc. The Pauli spin operators σ

±,z
j are associated

with the jth spin at frequency ωj. In such an ensemble of N spins that
share a single excitation, we find one super-radiant state24 |B〉 = J+|G〉
and N − 1 subradiant states |S〉, where J± = (1/

������
ΣN
i g

2
i

√
)ΣN

j gjσ
±
j is the

collective spin operator and |G〉 the collective spin ground state.
The hybridized polariton modes |±〉 = (|1〉c|G〉s±|0〉c|B〉s)/

��
2

√
are entangled states between the cavity and the super-radiant spin
state. The vacuum Rabi splitting25 is due to a collectively enhanced
interaction ΩR /2≈Ω =

������
ΣN
i g

2
i

√
scaling approximately as

���
N

√
.

Subradiant states remain uncoupled and degenerate in the absence
of spin broadening. In the presence of inhomogeneous spin broad-
ening, corresponding to a variation of ωj centred around a central
spin frequency ωs (Fig. 2a(i),b(i) and c(i)), the polariton modes
and subradiant states are not entirely decoupled. The inhomo-
geneous spin broadening of γinh/2π = 4.55 MHz is the main source

1Vienna Center for Quantum Science and Technology (VCQ), Atominstitut, TU Wien, Stadionallee 2, 1020 Vienna, Austria. 2Zentrum für Mikro- und
Nanostrukturen, TU Wien, Floragasse 7, 1040 Vienna, Austria. 3Department of Physics, Princeton University, Princeton, New Jersey 08544, USA. 4Institute
for Theoretical Physics, TU Wien, Wiedner Hauptstraße 8-10/136, 1040 Vienna, Austria. 5NTT Basic Research Laboratories, 3-1 Morinosato-Wakamiya,
Atsugi, Kanagawa 243-0198, Japan. 6National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan. †These authors contributed
equally to this work. *e-mail: stef.putz@gmail.com; jmajer@ati.ac.at

LETTERS
PUBLISHED ONLINE: 21 NOVEMBER 2016 | DOI: 10.1038/NPHOTON.2016.225

NATURE PHOTONICS | VOL 11 | JANUARY 2017 | www.nature.com/naturephotonics36

© 2016 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

mailto:stef.putz@gmail.com
mailto:jmajer@ati.ac.at
http://dx.doi.org/10.1038/nphoton.2016.225
http://www.nature.com/naturephotonics


of decoherence here, accelerating the evolution of an excitation
stored in the super-radiant mode into the bath of subradiant states.

The polariton modes |±〉 can be decoupled from the bath of sub-
radiant states by the ‘cavity protection effect’26,27. Only in the limit of
Ω→∞ is the decay rate ultimately bound by the mean of both dis-
sipation rates Γmin = (κ + γ)/2. As suggested in ref. 10, it is possible to
break this limit of Γmin by engineering polariton modes that live
mostly in the spins, for which the decay rate is much smaller than
that of our cavity interface, γ≪ κ. In traditional hole burning,
such a long-lived spin population is pumped back into the created
hole. Here, however, the strong cavity spin interaction automatically
hybridizes a narrow state in the centre of the created spectral hole.
We identify the resulting long-lived spin states as ‘collective dark
states’9,27, which allows us to improve the total coherence times by
over more than one order of magnitude.

If a hole is burnt at the positions of the polariton modes ωs ±ΩR/2
(Fig. 2a(ii),b(ii) and c(ii)) two new spin distributions are effectively
created left (|L〉) and right (|R〉) detuned of the spectral hole. These
spin packets share a common ground state |G〉, meaning that the
cavity sees a V level system28 that naturally features a dark state
|D〉. Both transitions |G〉→ |L〉 and |G〉→ |R〉 are coupled to the
cavity field, and so a small cavity |1〉c component is added to the
emerging dark state. If the spectral hole is created in the centre of
the polariton mode this dark state

|D〉 ≈ 1���������
Δ2 + 2g2μ

√ gμ(|R〉 − |L〉)|0〉c+Δ|G〉|1〉c
[ ]

lies right in the middle of the spectral hole and is isolated from the
bath of subradiant states, with the spectral hole having width Δ and
an effective cavity spin coupling strength gμ. This anti-symmetric
long-lived spin state |D〉 has a linewidth ΓD ≥ γ, which is governed
by the width of the spectral hole Δ and can be substantially
narrower than the cavity linewidth κ, as we show in the following.

We created dark states, as shown in Fig. 2a(ii), b(ii) and c(ii),
by burning two spectral holes at ωs ±ΩR/2 with a bandwidth of
Δ/2π = 235 kHz (see Methods). This bleaching thermalizes spins
into an equal mixture of their ground and excited states and so
cancels out their collective spin–cavity interaction. Saturated spins
will decay slowly towards their ground state on a timescale of
≥10 ms, given by their spin lifetime6 of T1 = 45 s, which is shortened
due to the Purcell effect29 and spin diffusion resulting from spin–
spin interactions. When the hole burning pulse intensity is above
a certain power threshold, long-lived dark states are created
(Fig. 3a, inset). This shows through long-lived coherent Rabi oscil-
lations after we switch off a strong hole burning pulse (shown in
Fig. 3a,b). In Fig. 3c we demonstrate that the hole burning procedure
not only suppresses the decoherence but also allows us to control the
Rabi flopping frequency when varying the position of the
spectral holes.

The achieved decay rates of the engineered collective dark states
ΓD/2π = 125 ± 10 kHz (Fig. 3a) are significantly below the funda-
mental limit (Γmin = (κ + γ)/2 > 2π × 220 kHz) reachable by the
‘cavity protection effect’22. As a result of the created spectral holes,
two narrow peaks emerge directly on top of the polariton modes.
To observe this directly, we compared the spectrally transmitted
steady-state intensity |A(ωp)|

2, as depicted in Fig. 3d, before and
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after spectral holes were burnt at positions equal to ωs ±ΩR/2. The
created holes and engineered dark states in Fig. 3d decay with a time
constant τ = 26.7 ± 2 μs due to spin diffusion, which limits the spec-
tral hole lifetime. In our experiment this is more than four times
longer than the best achievable spin echo time T2 = 4.8 ± 1.6 μs.
We conclude that τ ∼ 1/2γ, as both rates are limited by spin diffusion
in our experiment (see Methods).

It is possible to use this procedure to store and retrieve a weak
intensity excitation from the spin ensemble. We drove our system
with a weak (<1 × 10–5 photons per spin) sinusoidally modulated
pulse. In the absence of spectral holes we observed the unchanged
system decay rate Γ/2π = 1.45 ± 0.05 MHz after switching off the
driving tone (Fig. 3e). We then applied a hole burning pulse and,
5 μs after the signal has decayed, the system was probed again.
After the weak probe pulse was switched off, different decay rates

were clearly distinguishable in the Rabi oscillations (Fig. 3f). We
first observed a reduced decay rate, Γ′/2π = 550 ± 50 kHz, due to
the created spectral holes and reduced damping of the bright polar-
iton modes. This first decay was followed by a crossover to a second
much slower decay, ΓD/2π = 200 ± 10 kHz, featuring long-lived Rabi
oscillations as the hallmark of the created dark states.

To show the potential of this hole burning we created multiple pairs
of dark states. Four spectral holes were created in the polariton modes
with Δ/2π = 150 kHz bandwidth at positions n±1 = ωs /2π ± 9MHz and
n±2 = ωs /2π ± 10.8MHz. In Fig. 4 we probe the dynamical response
after the hole burning with a weak sinusoidally modulated microwave
pulse and observe a clear beating in the Rabi oscillations with a mean
dark state decay rate of ΓD/2π = 280 ± 20 kHz. The beat frequency of
∼1.8 MHz corresponds to the frequency difference of both spectral
holes in each polariton mode. The two revivals in the Rabi oscillations
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are a clear signature of the coherent dark states beating against each
other. This is a first step towards the realization of a solid-state micro-
wave frequency comb, in which one could ideally address up to
approximately Γ/Δ long-lived dark states in one polariton mode.

To conclude, we have demonstrated how spectral hole burning
can be used to selectively bleach the ensemble’s absorption spec-
trum in the microwave domain. The created holes allow the engin-
eering of coherent collective long-lived dark states that decay
significantly more slowly than the constituent subsystems. This
hybridizes the system in such a way that the overall coherence
time is no longer bound by the cavity and spin ensemble linewidth.
Our work can be seen as a first proof-of-principle experiment for
the great potential of hybrid systems. The reported technique
opens new possibilities in quantum devices and a new class
of cavity QED experiments beyond the standard Dicke24 and
Tavis–Cummings model.

Methods
Methods and any associated references are available in the online
version of the paper.
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28. Fleischhauer, M., İmamoǧlu, A. & Marangos, J. P. Electromagnetically induced
transparency: optics in coherent media. Rev. Mod. Phys. 77, 633–673 (2005).

29. Purcell, E. M. Spontaneous emission probabilities at radio frequencies. Phys. Rev.
69, 681 (1946).

Acknowledgements
The authors thank A. Ardavan, B. Hartl, G. Kirchmair, K. Nemoto, H. Ritsch and
M. Trupke for helpful discussions. The experimental effort led by J.M. was supported by the
Top-/Anschubfinanzierung grant of TUWien. S.P. and A.A. acknowledge support from the
Austrian Science Fund (FWF) in the framework of the Doctoral School ‘Building Solids for
Function’ Project W1243. D.O.K. and S.R. acknowledge funding by the Austrian Science
Fund (FWF) through the Spezialforschungsbereich (SFB) NextLite Project No. F49-P10.

Author contributions
S.P., A.A., J.S. and J.M. designed and set up the experiment. A.A. and R.G. carried out the
measurements under the supervision of S.P. and J.M. D.O.K. and S.R. devised the
theoretical framework and, together with W.J.M., provided the theoretical support for
modelling the experiment. S.P. wrote the manuscript and all authors
suggested improvements.

Additional information
Supplementary information is available in the online version of the paper. Reprints and
permissions information is available online at www.nature.com/reprints. Correspondence and
requests for materials should be addressed to S.P. and J.M.

Competing financial interests
The authors declare no competing financial interests.

0.0 0.5 1.0 1.5

|A
|2 

(a
.u

.)

0.0

0.2

0.4

0.6

0.8

1.0

1.51.0

600% scaled

Time (μs) 

Figure 4 | Engineering of multiple dark states. We create four spectral
holes and dark states at frequencies ν±1 = ωs/2π ± 9MHz and
ν±2 = ωs/2π ± 10.8MHz close to the polariton modes. The response is
probed with weak pulse intensities of ∼1 × 10–5 photons per spin in the
cavity. After the sinusoidally modulated drive with frequency ΩR/2 and
carrier frequency ωp =ωc =ωs (grey area) is switched off, we observe a clear
beating with Δν21

≈ 1.8MHz characterized by revivals of the damped Rabi
oscillations decaying with a rate ΓD/2π = 280 ± 20 kHz. Error corresponds to
the minimum and maximum values of the estimated decay rate.
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Methods
The microwave cavity was loaded by placing the diamond sample on top of a λ/2
transmission line resonator. The superconducting microwave cavity was fabricated
by optical lithography and reactive-ion etching of a 200-nm-thick niobium film
sputtered on a 330-μm-thick sapphire substrate. The loaded chip was hosted and
bonded to a printed circuit board enclosed in a copper sarcophagus and connected
to microwave transmission lines.

The spin ensemble was realized by enhancing a type Ib high-pressure high-
temperature diamond (HPHT) crystal containing an initial concentration of 200 ppm
nitrogen with a natural abundance of 13C nuclear isotopes. We achieved a total
density of ∼6 ppm negatively charged NV centres by 50 h of neutron irradiation
with a fluence of 5 × 1017 cm–2 and annealing the crystal for 3 h at 900 °C. In our
system, excess nitrogen P1 centres (S = 1/2), uncharged NV0 centres, plus additional
lattice stress served as the main sources of decoherence and caused spectral line
broadening, which by far exceeded dephasing due to the naturally abundant 1.1%
13C spin bath. The characteristics of the diamond crystal and NV ensemble were
initially determined at room temperature using an optical laser scanning
microscope30. In the present experiment, the broadened spin ensemble was
characterized by a q-Gaussian spectral line shape ρ(ω) with a linewidth of
γinh/2π = 4.55 MHz (ref. 22).

The negatively charged NV centre is a paramagnetic impurity with electron spin
S = 1 that consists of a substitutional nitrogen atom and an adjacent vacancy in the
diamond lattice. The electron spin triplet can be described by the Hamiltonian,
H/h = DS2z + μBS, with μ = 28 MHz mT−1 and a large zero-field splitting of
D = 2.877 GHz corresponding to hD/kB ≈ 138 mK. This allowed us to thermally
polarize the NV spin (at finite temperatures of 25 mK) up to 99%. Due to the
diamond lattice structure, four different orientations of the adjacent vacancy were
possible, resulting in four NV sub-ensembles. Magnetic field strengths on the order
of |B| = 8 mT, applied in the (100) crystallographic plane and parallel to the
transmission line resonator, were sufficient to bring the cavity and spins into
resonance. In the experiments presented in the main text the magnetic field was
rotated by 45° in this plane, at which only two sub-ensembles were degenerate, being
in resonance with the cavity.

The measurement scheme was an autodyne detection scheme for spectral hole
burning and for measuring the transmitted intensity |A(t)|2 through the cavity. The
signal of a microwave source was split into two paths: one serving as cavity probe
tone and the other as a local oscillator, both with frequency ωp. The cavity probe
tone was modulated by a frequency mixer and an arbitrary waveform generator
(AWG) with 2 GS s–1 sampling frequency. The pulsed microwave probe tone could
be attenuated up to −45 dB and routed through a high-power amplifier with +40 dB
gain by a fast microwave switch. The microwave drive was then fed into the cryostat
and attenuated by −2 dB on the 4 K stage, allowing the application of up to 500 mW

power at the cavity input. The transmitted signal was fed into a low-noise amplifier
with +40 dB gain on the 4 K stage and mixed with the reference signal, and both
quadrature signals were recorded by an oscilloscope with 5 GS s–1 sampling
frequency. From the measured quadratures I(t) and Q(t), the transmitted microwave
intensity |A(t)|2 was calculated (and plotted in Figs 3 and 4 and Supplementary
Fig. 2). The transmitted intensity through the cavity resulted in a steady-state signal
of |A|2 = 5 × 10–4 ± 2.5 × 10–7 (V2) for a single shot, which was then averaged 100
times for the measurements shown in Fig. 3e,f (where only one quadrature |Q|2 is
plotted) and Fig. 4. All line- and bandwidths and associated decay rates are given as
half-width at half-maximum (HWHM).

Hole burning was experimentally achieved by quadrature amplitude modulation
of a high-intensity hole burning pulse. The carrier frequency ωp = ωc = ωs was
modulated by a sinusoidal signal η0 sin(ΩR t/2)e

−iωp t with a Gaussian envelope and
bandwidth Δ. Power values of up to |η0|

2 ∝ 20 mW were obtained, corresponding to
a steady state with ∼1 × 104 photons per spin in the cavity. This intensity is strong
enough to bleach spin components selectively at the frequencies of the modulated
drive signal. Such a pulse creates two frequency components and spectral holes at
ωp ±ΩR/2 with Δ bandwidth. However, the large number of spins in the experiment
makes it necessary to use even larger input powers to burn multiple spectral holes in
one shot. We therefore used two consecutive ∼5-μs-long sequences to create two
pairs of holes close to the polaritonic modes. After the creation of single and
multiple pairs of dark states we probed the system again with a weak pulse
η0 sin(ΩRt /2)e

−iωp t (ωp = ωc = ωs) corresponding to <1 × 10–5 photons per spin in
the cavity after the hole burning pulse had decayed.

Spin echo spectroscopy measurements were used to quantify the spectral hole
lifetime. A Car–Purcell–Meiboom–Gill (CPMG) sequence was used to estimate
the spin–spin relaxation time (T2), and stimulated echo spectroscopy techniques
were used to measure the spin-lattice relaxation time in the rotating frame (T1ρ).
The best achievable echo times in our experiment were T2 = 4.8 ± 1.6 μs and
T1ρ = 6.4 ± 0.59 μs, measured by CPMG and stimulated echo, respectively.
We therefore conclude that the spin dissipation rate γ ≡ 1/τ = 2π × 5.9 kHz is
dominated by spin diffusion in our experiment, given that T2 ≈ T1ρ. Although
limited by the same process, the spectral hole lifetime is more than a factor of
four longer than T2 and T1ρ. This can be explained by the misalignment of the
external d.c. magnetic field with respect to the NV axis and a bath of excess
electron and nuclear spins in the host material.
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I. RABI SPLITTING & RABI OSCILLATIONS
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FIG. S1: Transmission spectroscopy measurements. The probe frequency ωp is scanned and

the cavity scattering parameter |S21|2 is measured by a vector network analyser. At zero external

magnetic field (black) the cavity is largely detuned from the NV spin ensemble (ωs �= ωc) and

the bare cavity with a linewidth κ/2π = 440 ± 10 kHz (HWHM) with a fundamental resonance

at ωc/2π=2.691 GHz and a quality factor of Q = 3, 130 is observed. A d.c. magnetic field of

|B| ≈ 8 mT is applied and a normal mode splitting (blue) ΩR/2π = 21.3 ± 0.1 MHz is observed

with a linewidth Γ/2π = 1.45± 0.05 MHz (HWHM) when the spin ensemble is in resonance with

the cavity (ωs = ωc).
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FIG. S2: Time dependent cavity transmission. A rectangular 800 ns long microwave pulse

(gray area) with carrier frequency ωp = ωc = ωs is applied. The transmitted intensity |A|2 is

measured by an auto-dyne measurement scheme and the down converted signal is displayed. At

zero external magnetic field (ωp = ωc �= ωs) the bare and resonant cavity transmission (black) is

observed. After the drive is switched off the intensity decays with κ = 440 ± 10 kHz. The NV

ensemble is brought into resonance with the cavity (ωp = ωc = ωs) by a Zeeman shift and the

system hybridises. We observe Rabi oscillations (blue) in the transmission signal with ΩR/2π =

21.3±0.1 MHz and a decay rate Γ/2π = 1.45±0.05 MHz. Both signals have been normalised with

respect to their maximal transmitted intensity.
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FIG. S3: Decay of a single dark state. A strong microwave pulse (grey area) creates a single

spectral hole in the center of one of the polariton modes. The decay of the cavity field shows a

fast initial decay which is followed by a crossover to a much slower decay rate. This slowed down

exponential decay with a rate ΓD = 110 ± 10 kHz of the cavity field is associated with a single

dark state. This procedure is used to optimise the experimental hole burning technique.

II. THEORETICAL ANALYSIS

The modelling of the dynamics after the hole burning process is done by deriving the

Heisenberg operator equations for the cavity and spin operators, ȧ = i
h̄
[H, a] − κa, σ̇−

j =

i
h̄
[H, σ−

j ]−γσ−
j , respectively, whereH stands for the Tavis-Cummings Hamiltonian1 given by

Eq. (1) of the main article. Although the hole burning is a nonlinear process, our primary

aim here is a theoretical model which is capable of capturing the linear non-Markovian

dynamics in the limit of weak driving powers after the holes in the spin density have been

burnt. This allows us to simplify the equations by setting 〈σz
j 〉 ≈ −1 (Holstein-Primakoff-

approximation2) and we derive the following linear set of first-order ODEs with respect to

the cavity and spin amplitudes (in the ωp-rotating frame)

Ȧ(t) = − [κ+ i(ωc − ωp)]A(t) +
∑
j

gjBj(t)− η(t),

Ḃj(t) = − [γ + i(ωj − ωp)]Bj(t)− gjA(t),

(1)

where A(t) = 〈a(t)〉 and Bj(t) = 〈σ−
j (t)〉 with η(t) being a time dependent drive term with

a carrier frequency ωp.

Owing to the large number of spins within the ensemble, the continuous spectral density

can be modeled as ρ(ω) =
∑N

j g2j δ(ω−ωj)/Ω
2, where Ω2 =

∑N
j g2j is the collective coupling

strength of the spin ensemble to the cavity. Finally, we set up a Volterra equation for
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the cavity amplitude, A(t) =
t∫
0

dτK(t − τ)A(τ) + F(t), with the memory kernel function,

K(t− τ) =
∫
dωρ(ω)S(ω, t, τ) (see3,4 for details). The latter has a nontrivial structure and

strongly depends on the exact shape of the spectral spin density ρ(ω). The system dynamics

is then calculated by assuming a weak sinusoidal driving pulse, η(t)=η0 sin(ΩR t/2) e−iωpt,

with the carrier frequency matching the resonance condition ωp = ωs = ωc, similarly to what

is done in the experiment (see Figs. 3 (e),(f) in the main text). The resulting dynamics is

displayed in Figs. S4 (b),(d) for the case without and with hole burning. Note that we

achieve very good agreement with the experimental data.
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FIG. S4: (Left panel): spectral spin density modeled by a q-Gaussian distribution3–5 without a and

with two spectral holes b burned at ωs ±ΩR/2. (Right panel): the corresponding dynamics under

the action of a sinusoidal driving signal with small intensity, sin(ΩR t/2) e−iωpt, with ωp = ωs = ωc.

Gray (white) area indicates the time interval during which the driving signal is on (off).

The connection between the physics of spectral hole burning and the collective dark states

shown in Fig. 2 of the main article is made by solving the eigenvalue problem of our spin-

cavity system and analyzing the resulting spectra. After substituting A(t) = A exp(λt),

Bj(t) = Bj exp(λt) and η = 0 into Eqs. (1), we derive the complex eigenvalue problem for

λ, which can be represented schematically as, Lψ = λψ, with ψ = (A,Bk)
T . Note that

in Fig. 2 of the main article, the value of E = Re(λ) is depicted. We take advantage of

the previously established continuous form for the spin density ρ(ω)4,5 and discretise our

problem by performing the following transformation, gµ = Ω
√
ρ(ωµ)/

∑
l ρ(ωl). Since in

total we deal with a sizeable number of spins (N ≈ 1012), we make our problem numerically

4
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tractable by dividing spins into many spin packets, so that gµ represent a coupling strength

within each spin packet rather than an individual spin coupling strength gj. To provide an

intuitive understanding how spectral hole burning reduces the decay rate we discuss here the

case when spins are uncoupled within narrow spectral intervals at frequencies corresponding

(approximately) to the location of two polaritonic peaks, ωs ± ΩR/2.
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Abstract A very promising recent trend in applied quantum
physics is to combine the advantageous features of different
quantum systems into what is called “hybrid quantum technol-
ogy”. One of the key elements in this new field will have to
be a quantum memory enabling to store quanta over extended
periods of time. Systems that may fulfill the demands of such
applications are comb-shaped spin ensembles coupled to a
cavity. Due to the decoherence induced by the inhomogeneous
ensemble broadening, the storage time of these quantum mem-
ories is, however, still rather limited. Here we demonstrate how
to overcome this problem by burning well-placed holes into the
spectral spin density leading to spectacular performance in the
multimode regime. Specifically, we show how an initial exci-
tation of the ensemble leads to the emission of more than a
hundred well-separated photon pulses with a decay rate sig-
nificantly below the fundamental limit of the recently proposed
“cavity protection effect”.

Sustained photon pulse revivals from inhomogeneously
broadened spin ensembles

Dmitry O. Krimer1,∗, Matthias Zens1, Stefan Putz2,3, and Stefan Rotter1

1. Introduction

Various setups in cavity quantum electrodynamics (QED)
have been intensively studied during the last decade with
regard to their potential for enabling the storage and pro-
cessing of quantum information. Particularly attractive in
this context are so-called “hybrid quantum systems” (HQS)
[1,2], which combine the individual advantages of different
quantum technologies. A major challenge for the realiza-
tion of quantum information processing consists in ensuring
coherent and reversible mapping of an encoded information
between different elements in such systems [3–8]. A par-
ticularly attractive scenario in this context is realized based
on atomic frequency combs or gradient memories in cav-
ity or cavity-less setups [9–18] for which the information
that one intends to store is emitted by the memory after
the writing process in pulsed revivals at equidistant times.
One of the major bottlenecks of this technology is, how-
ever, that an inhomogeneous broadening of the atomic or
spin ensemble, which plays the role of a quantum memory
[19, 20], typically leads to a relatively fast decoherence of
the stored information [21–23]. To counteract this detrimen-
tal effect on the storage time, various techniques have been
developed based, e.g., on refocusing pulses [24], gradient
inversion methods [25], or preselecting the optimal spectral
portion of the inhomogeneously broadened ensemble [26].
Other very recent studies propose to access long-lived dark

1 Institute for Theoretical Physics, Vienna University of Technology (TU Wien), Wiedner Hauptstraße 8-10/136, 1040, Vienna, Austria
2 Vienna Center for Quantum Science and Technology, Atominstitut, Vienna University of Technology (TU Wien), Stadionallee 2, 1020, Vienna,
Austria
3 Department of Physics, Princeton University, Princeton, NJ 08544, USA
∗Corresponding author: e-mail: dmitry.krimer@gmail.com

or subradiant states in atomic or spin ensembles for efficient
information storage [27–31]. Also new setup designs with-
out any inhomogeneous broadening such as those based on
magnon modes strongly coupled to a cavity have recently
been realized [17, 18]. In this case, however, the gradient
memory is characterized by relatively large intrinsic losses
which impose limitations on the achievable time span of the
revival dynamics. From these state-of-the-art experiments
it is clear that new ideas and concepts will be needed to
make these quantum memories viable for practical imple-
mentations, in particular in terms of the achievable storage
time and the associated information retrieval efficiency.

In this work, we propose a novel approach to obtain a
sustained emission of photon pulses from spin-ensembles
in spite of a significant inhomogeneous broadening of the
spin transition frequencies. Our concept is not restricted to
a particular experimental realization of a spin ensemble, but
can instead be generally applied to different physical real-
izations based, for instance, on negatively charged nitrogen-
vacancy (NV) defects in diamond [21–23,32], or rare-earth
spin ensembles [13, 33, 34]. The main requirement for our
theory to be applied is that the losses exhibited by each
individual constituent in the ensemble, γ , are substantially
smaller as compared to the bare cavity decay rate, κ . Our
key insight is that the decoherence in such hybrid quantum
systems can be all but suppressed by a very non-invasive
preparatory step involving the burning of a certain number

C© 2016 by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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of narrow holes in the comb-shaped spectral spin distribu-
tion at well-defined frequencies. Such a procedure allows
us to access the corresponding collective dark state to align
the system with the lowest decay scale γ , and as a result,
to go beyond the fundamental limit of half the bare cavity
decay rate κ set by the recently proposed “cavity protection
effect” [35–38]. In this way we demonstrate how to sustain
the pulsed emission from the ensemble during very long
time intervals up to a few microseconds, achieving more
than a hundred well-separated pulses.

2. Results

Starting point of our analysis is an arrangement of several
inhomogeneously broadened spin ensembles coupled to a
single cavity mode with frequency ωc. We assume that the
spin ensembles have been prepared with mean frequen-
cies ω

(μ)
s that are equidistantly spaced at intervals of �ω,

such that ω
(μ)
s = ωc ± nμ�ω, resulting in a comb-shaped

spectral density (see Fig. 1(a)). While our approach is gen-
eral we will be referring in the following to one partic-
ular experimental realization based on magnetic coupling
of NV-ensembles residing in several diamonds coupled to
a superconducting microwave resonator. Note that by an
appropriate alignment of the diamonds with respect to an
external magnetic field and by exploiting the Zeeman effect,
the mean frequencies of the spin ensembles, ω(μ)

s , can be ef-
ficiently tuned in a rather wide spectral interval [22,23]. To

Figure 1 (a) Spectral spin distribution, F(ω) = ∑M
μ=1 �2

μ/�2 ·
ρμ(ω), consisting of seven equally spaced q-Gaussians of equal
width, γq/2π = 9.4 MHz. F(ω) has peaks at frequencies ω

(μ)
s =

ωc ± nμ�ω with the spacing, �ω/2π = 40 MHz. The cavity
frequency ωc coincides with the mean frequency of the cen-
tral q-Gaussian, ωs = ωc = 2π · 2.6915 GHz. Spin ensembles
have coupling strengths distributed as �2

μ/�2 = exp[−(ωc −
ω

(μ)
s )2/2σ 2

G], with σG/2π = 150 MHz. (b) Spectral function from
(a) with eight spectral holes (see arrows) at the maxima of the
cavity content |Aμ|2 shown in Fig. 3(e) for �/2π = 26 MHz. All
holes are of equal width, �h/2π = 0.47 MHz, and are modelled
by a Gaussian lineshape.

be concrete, we used in our calculations the specific param-
eter values from recent studies, where the non-Markovian
dynamics and the cavity protection effect in a single-mode
cavity strongly coupled to a single inhomogeneously broad-
ened NV-ensemble have been studied (without holes in the
spectral spin density) [37, 38].

2.1. Theoretical model

To account for the spin-cavity dynamics, we start from the
Tavis-Cummings Hamiltonian (� = 1) [40]

H = ωca†a + 1

2

M∑
μ=1

Nμ∑
k=1

ω
(μ)
k σ

(μ)(z)
k +

i
M∑

μ=1

Nμ∑
k=1

[
g(μ)

k σ
(μ)(−)
k a† − g(μ)∗

k σ
(μ)(+)
k a

]
−

i
[
η(t)a†e−iωpt − η(t)∗aeiωpt

]
, (1)

where M and Nμ in the summations above stand for the
number of spin ensembles coupled to the single cavity mode
and the number of spins in the μ-th ensemble, respectively.
Here a† and a are standard cavity creation and annihilation
operators and σ

(μ)(±,z)
k are the Pauli operators associated

with each individual spin of frequency ω
(μ)
k , which obey

the usual fermionic commutation relations. (The subscript
k enumerates an individual spin which resides in the μ-
th ensemble.) The interaction part of the Hamiltonian is
written in the rotating-wave and dipole approximation, with
g(μ)

k being the coupling strength of the k-th spin located in
the μ-th ensemble. The absence of dipole-dipole interaction
terms in Eq. (1) implies that the concentration of spins in
each ensemble is sufficiently low and the distance between
them is large enough. The last term in Eq. (1) describes an
incoming signal with carrier frequency ωp and amplitude
η(t) whose time variation is much slower as compared to
1/ωp.

Although the individual spin coupling strengths g(μ)
k are

very small, the effective collective coupling strength of each
spin ensemble to the cavity mode, �μ = (

∑Nμ

k=1 g(μ)2
k )1/2,

is enhanced by a factor of ∼ √
Nμ. Thus, thanks to this

collective coupling it becomes possible to reach the strong
coupling regime for sufficiently large ensembles (see, e.g.,
[7, 22, 32] for NV spin ensembles). In a number of pre-
vious studies [23, 35–38] it was demonstrated that it is
very convenient to phenomenologically introduce a con-
tinuous distribution ρ(ω) which describes the shape of the
single spin spectral density. In a similar manner, we define
here M distributions, ρμ(ω) = ∑Nμ

k=1 g(μ)2
k δ(ω − ω

(μ)
k )/�2

μ,
which stand for the shape of the μ-th spin spectral density,
each satisfying the normalization condition

∫
dωρμ(ω) =

1. Note that the coupling strengths �μ are not equal in
general, so that the total spectral distribution acquires the
following form, F(ω) = ∑M

μ=1 �2
μ/�2 · ρμ(ω), where �

C© 2016 by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.lpr-journal.org
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stands for the collective coupling strength of the central
ensemble [see Fig. 1(a)]. In agreement with our previous
studies [23,37,38], we assume that the spectral spin density
of each ensemble, ρμ(ω), can be modelled by a q-Gaussian
distribution of the following form

ρμ(ω) = C · [
1 − (1 − q)(ω − ω(μ)

s )2/�2
] 1

1−q ,

where q is the dimensionless shape parameter, 1 < q < 3,
γq = 2�

√
(2q − 2)/(2q − 2) is the full-width at half max-

imum (FWHM) and C is the normalization constant.
Next, we derive the Heisenberg operator equations for

the cavity and spin operators and write a set of equa-
tions for the expectation values (semiclassical approach).
We consider the limit of weak driving powers and there-
fore the number of the excited spins is always small com-
pared to the ensemble size. This allows us to simplify these
equations by setting 〈σ (μ)(z)

k 〉 ≈ −1 (Holstein-Primakoff-
approximation [41]) which results in a closed set of lin-
ear first-order ordinary differential equations (ODEs) for
the cavity and spin expectation values, A(t) = 〈a(t)〉 and
B(μ)

k (t) = 〈σ (μ)(−)
k (t)〉. Finally, by going to the continu-

ous limit and performing rather cumbersome but straight-
forward calculations, we end up with a Volterra integral

equation for the cavity amplitude, A(t) = �2
t∫

0
dτK (t −

τ )A(τ ) + D(t) [38], where D(t) depends on the driving
signal and initial conditions. Here the memory kernel func-
tion, K (t − τ ) = ∫

dωF(ω)S (ω, t, τ ) (see Supplemen-
tary Note 1), strongly depends on the exact shape of the
spectral distribution, F(ω), and is responsible for the non-
Markovian feedback of the spin ensembles on the cavity,
so that the cavity amplitude at time t depends on all pre-
vious events τ < t . (S (ω, t, τ ) depends on the time delay,
t − τ , frequency, ω, but is independent from the spectral
distribution.)

The Volterra equation turns out to be the governing
equation not only for the semiclassical but also for the quan-
tum case, when at t = 0 the cavity is fed with a single pho-
ton and all spins in the ensembles are unexcited, |1,↓(i)〉.
In Supplementary Note 2 we show in detail that the prob-
ability for a photon to stay inside the cavity at time t > 0,
N (t) = 〈1,↓|a†(t)a(t)|1,↓〉, reduces to N (t) = |A(t)|2 in
this case, where A(t) is the solution of the aforementioned
Volterra equation with the initial condition A(t = 0) = 1.
Note that in the context of spontaneous emission inhibi-
tion using the Zeno effect also analytical solutions of the
Volterra equation have been explored [39].

2.2. Multimode strong coupling dynamics

We first apply the Volterra equation to the spectral function
F(ω) displayed in Fig. 1(a), for the case when the cou-
pling strength is in the regime, where only the central spin
ensemble is strongly coupled to the cavity mode (at the res-
onance condition ωs = ωc). In Fig. 2(a) we plot the decay
of the cavity occupation N (t) = 〈1,↓|a†(t)a(t)|1,↓〉 from

Figure 2 Left column: Decay of the cavity occupation N(t) =
〈1,↓|a†(t)a(t)|1,↓〉, when at t = 0 the cavity is fed with a single
photon of frequency ωc and all spins are in the ground state,
|1,↓〉. Right column: Cavity probability amplitude |A(t)|2 versus
time t under the action of an incident short rectangular pulse of
duration 6 ns. The carrier frequency, ωp = ωc = 2π · 2.6915 GHz.
Gray (white) area indicates the time interval during which the
pumping signal is on (off). (a,b) Strong coupling regime (�/2π =
8 MHz) with damped Rabi oscillations. (c,d) Multimode strong
coupling regime (�/2π = 26 MHz) featuring pulsed revivals. The
spectral function F(ω) is taken from Fig. 1(a) when the mean
spin frequency of the central q-Gaussian, ωs = ωc [resonant case
designated by vertical cuts in Fig. 3(a,d)].

the initial state, for which a single photon with frequency ωc

resides in the cavity and all spins are unexcited (the model
is given in Supplementary Note 2). The resulting dynamics
displays damped Rabi oscillations, which feature, however,
a slightly distorted shape arising from the dispersive con-
tribution of neighbouring spin ensembles. We observe very
similar dynamics also in the semiclassical case shown in
Fig. 2(b), when the cavity is pumped by a short rectangular
microwave pulse with a carrier frequency matching the res-
onance condition, ωp = ωs = ωc (see Supplementary Note
1 for the derivation of governing equations).

In a next step, we repeat the calculations for both the
quantum and the semiclassical case keeping all parame-
ters unchanged except for the coupling strength, which we
increase from �/2π = 8 MHz to �/2π = 26 MHz. In
this limit we already entered the multimode strong cou-
pling regime (see [42], where the reverse situation was
explored, when a single emitter is coupled to many cav-
ity modes). Correspondingly, we now observe the desired
pulsed revivals of the cavity occupation N (t) and the peri-
odic emission of excitations from the spin-ensembles into
the cavity amplitude A(t). This type of dynamics can be
attributed to a constructive rephasing of spins in the en-
sembles at time intervals that are approximately equal to
the inverse of the spectral distance between adjacent spin-
ensembles, 2π/�ω, shown in Fig. 1(a). It is worth noting
that we intentionally chose the duration of the initial driv-
ing pulse in Fig. 2(d) to be much smaller as compared to
the characteristic dephasing time in our system. Such a
choice ensures that the dephasing, caused by the effect of
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inhomogeneous broadening, only has a negligible influ-
ence up to the moment of time when the driving pulse is
turned off. As a result, we obtain very regularly spaced and
well-separated pulses similar to the single-photon case. As
the duration of the driving pulse increases, the dephasing
effect gradually sets in, and as a consequence, the dynam-
ics becomes more and more irregular (not shown). While
these results already demonstrate that the pulsed emission
from collectively coupled and inhomogeneously broadened
spin ensembles is achievable for realistic parameter val-
ues, the number of pulses that we observe in our solu-
tions is rather limited (see Fig. 2). The crucial question
to ask at this point is thus, whether a simple and efficient
procedure can resolve this major bottleneck in the system
performance.

2.3. Eigenvalue analysis

As we will show below, such a procedure can, indeed, be
worked out based on a delicate modification of the spin
spectral density. To arrive at this result, we need to in-
vestigate first how the eigenvalues and the corresponding
eigenstates of this hybrid cavity-spin system look like. For
this purpose we discretise the spectral distribution F(ω) in
the frequency domain and substitute A(t) = A · exp(−λt)
as well as B(μ)

k (t) = Bk · exp(−λt) into the above set of
ODEs for the cavity and spin expectation values. This al-
lows us to derive and solve numerically for each value
of ωs the non-Hermitian eigenvalue problem Lψl = λlψl ,
with ψl = (Al, Bk

l )T being the eigenvector which repre-
sents the collective spin-cavity excitation belonging to the
eigenvalue λl (see Supplementary Note 4 for details). Note
that Im(λl) plays the role of the collective eigenfrequency
and Re(λl ) > 0 is the rate at which ψl decays. When solv-
ing this eigenvalue problem we always keep the same shape
for the spectral function F(ω) depicted in Fig. 1(a) but shift
the whole structure in the frequency domain by detuning
the mean spin frequency ωs of the central ensemble with
respect to the cavity ωc. [Fig. 1(a) corresponds to the res-
onant case, ωs = ωc.] The only other parameter that we
vary is again the value of the coupling strength �, that we
tune from the limit where the cavity mode is strongly cou-
pled solely to the central spin subensemble to the regime of
“multimode strong coupling”.

The results of these calculations are presented in Fig. 3,
where we plot the cavity content, |Al |2, of the normalised
eigenvector ψl as a function of ωs and the calculated col-
lective eigenfrequency Im(λl) [(a),(d)] or decay rate Re(λl)
[(c),(f)]. Let us consider first the regime where the value for
the coupling strength �μ of each spin ensemble separately
is large enough to ensure strong coupling to the cavity.
In this “single-mode strong coupling limit” we observe an
avoided crossing in Fig. 3(a) whenever the resonance con-
dition with the μ-th ensemble is met, ω

(μ)
s = ωc. The other

off-resonant spin ensembles in turn give rise to small dis-
persive contribution only. The most pronounced avoided
crossing is observed when the cavity is at resonance with

the central spin ensemble, ωs = ωc, where two symmet-
ric polaritonic peaks in the structure of |Al |2 occur, see
Fig. 3(b). It is also seen from Fig. 3(c) [yellow symbols]
that a large fraction of eigenstates, ψl , decays with some
intermediate values of the decay rate which lie within the
interval γ < Reλl < κ . (Here κ and γ 
 κ are the dis-
sipative cavity and spin losses, respectively.) This can be
explained by the fact that such eigenvectors represent an
entangled spin-cavity state, where both the cavity and spin
contents are essentially nonzero.

With a further increase of the coupling strength, the
distance between the two polaritonic peaks depicted in
Fig. 3(b), which is approximately as large as 2�, increases
and the peak line shapes become substantially sharper (not
shown). Such a peak narrowing can be attributed to the
so-called “cavity protection effect” [35–38] that appears in
the strong coupling regime provided that the spin density
has a spectral distribution with tails that decay sufficiently
fast. The latter requirement is indeed satisfied in our case
because the spectral function F(ω) in Fig. 1(a) consists of
seven q-Gaussian distributions.

At even larger values of � the avoided crossings even-
tually disappear, being replaced instead by a comb-shaped
structure with parallel stripes characterised by a large cav-
ity content, see yellow curves in Fig. 3(d). Such a picture
is, however, valid only for moderate values of detuning of
ωs from ωc, whereas for large detuning we are in the dis-
persive regime [see Fig. 3(d,f)]. A comb-shaped structure
of |Al |2 with almost equally spaced polaritonic peaks is
clearly seen at resonance, ωs = ωc, indicating the multi-
mode strong coupling between all spin ensembles and the
cavity mode [see Fig. 3(e)]. It is worth noting that the peaks
become substantially sharper as compared to the case of
the single-mode strong coupling regime [compare Fig. 3(e)
with Fig. 3(b)] due to the aforementioned “cavity protection
effect”. These narrow peaks in the frequency domain are
exactly those that are responsible for the pulsed emission
in the time domain as observed in Fig. 2(d).

The shapes of |Al |2 versus Im(λl) at ωs = ωc for both
the multimode and the single-mode strong coupling regime
reproduce exactly the corresponding shapes of the kernel
function U (ω) obtained in the framework of the Laplace
transform technique sketched in Supplementary Note 3
[compare Fig. 3(b,e) in the main text with Fig. 2(a,b) in
Supplementary Material]. The connection between these
two complementary concepts provides instructive insights
into the physics underlying the multimode strong coupling
regime.

2.4. Suppression of decoherence

Specifically, we want to apply these findings now to the sup-
pression of decoherence in the multimode strong-coupling
regime [17, 42]. For this purpose we will make use of the
recent insight [30], that for single-mode strong-coupling
the decoherence induced by the spin broadening can be
strongly suppressed simply by burning two narrow spectral
holes in the spin spectral density close to the maxima of
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Figure 3 Upper row: Single-mode strong coupling regime. Solution of the eigenvalue problem (see the main text for details) at
�/2π = 8 MHz as a function of the mean spin frequency ωs of the spectral function F(ω) shown in Fig. 1(a). (a) The cavity content,
|Al |2, of the normalised eigenvector, ψl = (Al , Bk

l ), versus eigenfrequencies Im(λl ) and ωs is represented by the color gradient (color
bar on the right in log scale): two prominent polariton modes are clearly distinguishable from a bath of dark states at fixed value
of ωs. (b) the cavity content |Al |2 versus Im(λl ) for the resonant case, ωs = ωc , along the vertical cut shown in (a) (dashed blued
line). (c) |Al |2 versus decay rates, Re(λl ), and ωs with the same coloring as in (a). Cyan dashed line: the minimally reachable decay
rate achieved due to the cavity protection effect, �/2 ≈ κ/2 (limit of γ 
 κ), with κ = 2π · 0.4 MHz (HWHM of the cavity decay) and
γ = 2π · 0.01 MHz 
 κ (HWHM of the spin decay). White dashed line: decay rate of a bare cavity mode, κ.
Lower row: Multimode strong coupling regime. Solution of the same eigenvalue problem as above, but for an increased coupling
strength �/2π = 26 MHz (notation and colors are the same as in the upper row). Eight polariton modes are clearly distinguishable
with an almost equidistant spacing, see (e) for the resonant case, ωs = ωc . In all calculations N = 1200 spins were used.

the two polaritonic peaks as shown here in Fig. 3(b). The
working principle of this effect is based on the creation of
long-lived collective dark states [27, 31, 35, 36] in the spin
ensemble that only have very little cavity content and may
thus even outperform the ultimate limit for the decoher-
ence rate of the cavity protection effect given by � = κ

for γ 
 κ [30]. (Note that the decay rate for a bare cavity
without spin ensembles coupled to it is 2κ .) Mathemati-
cally, this effect can be associated with rapid variations of
the nonlinear Lamb shift around the holes’ positions and
with contribution of poles in the Laplace transform of the
Volterra equation derived above [30]. Since this theoretical
concept has meanwhile also been successfully implemented

in a corresponding experiment [31], we will try to general-
ize it here to the case where not just two polaritonic peaks
appear (as for single-mode strong coupling), but instead
many of them (as for multimode strong coupling).

The most natural extension of this hole-burning ap-
proach to the multimode regime would demand that the
positions of the burned spectral holes remain close to the
polaritonic peaks of which we observe altogether eight in
Fig. 3(e), corresponding to the seven spin-subensembles
shown in Fig. 1(a). As illustrated in Fig. 1(b), we there-
fore propose to burn eight narrow spectral holes into the
spin distribution at frequencies which correspond to the
maxima of the cavity content, |Al |2, shown in Fig. 3(e) (or,
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Figure 4 (a) Cavity probability amplitude |A(t)|2 versus time t under the action of an incident short rectangular pulse of duration 6 ns
after eight holes are burnt at t = 0, see Fig. 1(b). All other parameters are the same as for the case without hole burning presented in
Fig. 2(d). (b) Same as (a) with the ordinate plotted on a logarithmic scale. The decay process with the minimal decay rate reachable
by the cavity protection effect, e−κt , with κ/2π = 0.4 MHz is depicted by the dashed line (limit of γ 
 κ). The decay rate of |A(t)|2 for
a bare cavity without spin ensembles coupled to it is given by e−2κt (not shown).

equivalently, to the maxima of the kernel function U (ω)
depicted in Fig. 2(b) of the Supplementary material). The
hole burning itself can be straightforwardly implemented
in the experiment by exposing the cavity to very high in-
tensity tones that feature frequency components exactly at
the desired holes positions. In this way the spins at these
frequency values will be shuffled into an equal population
of ground and excited states, where they can no longer cou-
ple to the cavity and thus effectively form a hole in the spin
distribution. This hole burning is essentially a nonlinear
process, which can not be captured by the Volterra equa-
tion, but we may very well describe the system dynamics
right after the holes have been burned. For this purpose
we directly integrate the Volterra equation numerically in
time, resulting in the time evolution for both the quantum
and the semiclassical case, which looks qualitatively very
similar for both cases (see Fig. 4, where the results for the
semiclassical case are presented only). For these results we
assume that the holes are burned at t = 0 and that they
keep their shape during the whole time interval shown in
Fig. 4, a property which is well-fulfilled in recent experi-
ments where the hole lifetime was estimated to be as large
as 27 μs [31]. Most importantly, we can see very clearly in
Fig. 4 that the pulsed emission from the spin ensemble per-
sists over a drastically increased time interval as compared
to the corresponding case without hole burning represented
in Fig. 2(d). This suppression of decoherence is not only a
quantitative improvement, but it breaks the barrier achiev-
able when making maximal use of the “cavity protection
effect”. To illustrate this explicitly, we replot in Fig. 4(b)
our results from Fig. 4(a) on a logarithmic scale and com-
pare them with this minimal exponential decay e−κt of the
fully cavity-protected ensemble. We find that the proba-
bilities |A(t)|2 for the photon pulse revivals significantly
exceed this barrier such that, e.g., at t ∼ 3 μs after the driv-
ing pulse, the values for |A(t)|2 are two orders of magni-

tude above those achievable through cavity-protection. For
longer time-scales this outperformance ratio continues to
grow. To check if the holes we burned in the ensemble are,
indeed, located at the optimal positions, we also performed
additional calculations in which we varied the hole posi-
tions by only a few percent away from the maxima of |Al |2.
We find that such a shift leads to a substantial decrease
in the revival amplitudes as compared to those in Fig. 4
(not shown), thereby confirming our initial choice of po-
sitioning the holes right at the frequencies of the po-
laritonic peaks to secure the long-lived photon pulse
revivals.

3. Conclusions and outlook

In conclusion, our study provides a novel approach to sup-
press the decoherence in quantum memories based on inho-
mogeneously broadened spin ensembles coupled to a cav-
ity. Specifically, when the ensembles feature a comb-shape
structure to give rise to repetitive photon pulse revivals,
we show how the burning of narrow holes in this atomic
frequency comb leads to a dramatic prolongation of the
revival dynamics. We emphasize that the positions of the
holes are generally incommensurate with the positions of
the peaks in the frequency comb - a result that follows di-
rectly from our theory for the multimode strong coupling
regime. Since our protocol successfully manages to over-
come the decoherence both from the inhomogeneous spin
broadening as well as from the cavity dissipation, we ex-
pect our protocol to be an important step towards future
possible realizations of quantum memories based on spin
ensembles.

The challenges we anticipate on the experimental side
are the preparation of a comb-shaped spectral spin distri-
bution (e.g., by detuning several sub-ensembles from each
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other) as well as the strong coupling to a single-mode cav-
ity. Following our proposal, several narrow spectral holes
then need to be burned into this spin ensemble (through the
cavity or from the outside). After such a preparatory step,
the quantum information (as stored, e.g., in a qubit [32])
may be transferred through the cavity bus to the spins from
where it is reemitted back into the cavity at periodic time
intervals without requiring any further control or refocusing
techniques.

Supporting Information

Additional supporting information may be found in the online ver-
sion of this article at the publisher’s website.
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Vion, D. Esteve, and P. Bertet, Phys. Rev. Lett. 107, 220501
(2011).

[33] S. Probst, H. Rotzinger, S. Wünsch, P. Jung, M. Jerger, M.
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A. Aufféves, Phys. Rev. A 84, 063810 (2011).

[36] Z. Kurucz, J. H. Wesenberg, and K. Mølmer, Phys. Rev. A
83, 053852 (2011).

[37] S. Putz, D. O. Krimer, R. Amsüss, A. Valookaran, T.
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Supplementary Note 1. Volterra equation for the cavity amplitude

Our starting point is the Hamiltonian (1) of the main article from which we derive the equations for the cavity and

spin operators, ȧ = i[H ,a], σ̇
(µ)(−)
k = i[H , σ̇

(µ)(−)
k ], respectively. Here a stands for the cavity operator and σ

(µ)(−)
k

are standard Pauli operators associated with the k-th spin residing in the µ-th ensemble. (All notations are in tact with

those introduced in the main article.) During the derivations we use the following simplifications and approximations

valid for various experimental realizations: (i) kT � h̄ωc (the energy of photons of the external bath is substantially

smaller than that of cavity photons); (ii) the number of microwave photons in the cavity remains small as compared to

the total number of spins participating in the coupling (limit of low input powers of an incoming signal), so that the

Holstein-Primakoff-approximation, 〈σ (µ)(z)
k 〉 ≈ −1, always holds; (iii) the effective collective coupling strength of each

spin ensemble, Ω2
µ = ∑

Nµ

k=1 g(µ)2k , satisfies to the inequality Ωµ � ωc, justifying the rotating-wave approximation; (iv) the

spatial size of the spin ensembles is sufficiently smaller than the wavelength of a cavity mode. Having introduced all these

assumptions, we derive the following system of coupled first-order linear ordinary operator equations for the cavity and

spin operators in ωp = ωc-rotating frame

ȧ(t) =−κ ·a(t)+
M

∑
µ=1

Nµ

∑
k=1

g(µ)k σ
(µ)(−)
k (t)−η(t), (1a)

σ̇
(µ)(−)
k (t)=−

[
γ+i(ω(µ)

k −ωc)
]

σ
(µ)(−)
k (t)−g(µ)k a(t), (1b)

where κ and γ are the total dissipative cavity and individual spin losses. By formally integrating the equations (1b) for the

spin operators and inserting them into Eq. (1a) for the cavity operator, we get

ȧ(t) =−κ ·a(t)+
M

∑
µ=1

Nµ

∑
k=1

g(µ)k σ
(µ)(−)
k (0)e−i

(
ω
(µ)
k −ωc−iγ

)
t −Ω

2
∫

∞

0
dωF(ω)

t∫
0

dτe−i(ω−ωc−iγ)(t−τ)a(τ)−η(t),
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where σ
(µ)(−)
k (0) is the initial spin operator and F(ω) stands for the total spectral function which is defined as a sum over

the spectral densities of each spin ensemble, F(ω) = ∑
M
µ=1 Ω2

µ/Ω2 ·ρµ(ω). Here ρµ(ω) = ∑
Nµ

k=1 g(µ)2k δ (ω −ω
(i)
k )/Ω2

i

describes the spin spectral density of the µ-th ensemble, Ωµ = (∑
Nµ

k=1 g(µ)2k )1/2 is its effective collective coupling strength

to the cavity mode and Ω stands for the coupling strength of the central ensemble.

We then treat the problem semiclassically by introducing the cavity and spin expectation values, A(t) = 〈a(t)〉 and

B(µ)
k (t) = 〈σ (µ)(−)

k (t)〉. For the sake of simplicity we consider the case when all spins are initially in the ground state,

B(µ)
k (0) = 0, so that Eq. (2) reduces to the closed Volterra integro-differential equation for the cavity amplitude

Ȧ(t) =−κ ·A(t)−Ω
2
∫

∞

0
dωF(ω)

t∫
0

dτe−i(ω−ωc−iγ)(t−τ)A(τ)−η(t). (2)

Next we formally integrate Eq. (2) in time and simplify the resulting double integral on the right-hand side by means of the

partial integration method. Assuming that the cavity is initially empty, A(0) = 0, we finally derive the following Volterra

integral equation for the cavity amplitude

A(t) =
t∫

0

dτK (t− τ)A(τ)+D(t), (3)

where K (t− τ) is the kernel function

K (t− τ) = Ω
2

∫
dω

F(ω)
[
e−i(ω−ωc−i(γ−κ))(t−τ)−1

]
i(ω−ωc− i(γ−κ))

· e−κ(t−τ), (4)

and the function D(t) is given by

D(t) =
t∫

0

dτ η(τ) · e−κ(t−τ). (5)

We solve then Eq. (3) numerically using the methods described in details in our recent publications [1, 2].

Supplementary Note 2. Single-photon dynamics

Here we prove that the probability for a single photon, which is populating the cavity at time t = 0, to stay inside the

cavity at t > 0, reduces to N(t) = |A(t)|2, where A(t) is the solution of the Volterra equation (2) with the initial condition

A(0) = 1 and η(t) = 0. By definition, this probability is nothing more than the expectation value of the number operator

N = a†(t)a(t), i.e. N(t) = 〈1,↓|a†(t)a(t)|1,↓〉. Taking into account that we deal with a single excitation in the system, we

make use of the following closure relation,

1= |0,↓〉〈0,↓|+∑
l
|0,↑l〉〈0,↑l |+ |1,↓〉〈1,↓|+∑

l
|1,↑l〉〈1,↑l |, (6)

where for the sake of notational simplicity the index l enumerates all spins independently of the spin ensemble to which

they belong to. We derive the following expression for N(t)

N(t)≡ 〈1,↓|a†(t)1a(t)|1,↓〉= (7)

|〈0,↓|a(t)|1,↓〉|2 + |〈1,↓|a(t)|1,↓〉|2 +∑
l
|〈0,↑l |a(t)|1,↓〉|2 +∑

l
|〈1,↑l |a(t)|1,↓〉|2.

We then let the operator equations (1a, 1b) from Supplementary Note 1 act on the bra- and ket-vectors which show up in

Eq. (7) and derive four independent sets of coupled ODEs for the corresponding expectation values 〈a(t)〉 and 〈σ−j (t)〉.
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σ

2

1

iω

3

S 1 Contour completion in the complex plane s = σ + iω for the calculation of

the inverse Laplace transform. Those contours which give nonzero contribution

are designated by numbers. The zig-zag line corresponds to the branch cut along

the negative part of the imaginary axis.

Remarkably, these sets of equations look formally the same being independent of the specific bra- or ket-vector appearing

on the left or right side in these operator equations i.e. they evolve in the same fashion as the corresponding operators

themselves. The only difference between the resulting solutions for the expectation values appearing in Eq. (7) stems from

the initial conditions which are nonzero only for the first term in the r.h.s. of Eq. (7), namely A(0) = 〈0,↓|a(0)|1,↓〉= 1.

For all other terms the resulting expectation values are zero at t = 0, and as a consequence, they remain zero at t > 0 as

well. Therefore, the probability for a photon to reside in the cavity at t > 0 reduces to N(t) = |〈0,↓|a(t)|1,↓〉|2 = |A(t)|2,

where A(t) is exactly given as the solution of the Volterra equation (2) in Supplementary Note 1 with the initial conditions

A(0) = 1 and Bl(0) = 0.

Supplementary Note 3. Laplace transform of the Volterra equation

Here we sketch the derivation of the Laplace transformation of the Volterra equation (2) from Supplementary Note 1

assuming that all spins are initially in the ground state and the cavity mode a contains initially a single photon, A(0) = 1

(the case considered in Supplementary Note 2). For that purpose we multiply Eq. (2) by e−st (s = σ + iω is the complex

variable), integrate both sides of the equation with respect to time and finally obtain the following expression for the

Laplace transform:

Ã(s) =
1

s+κ− γ +Ω2
∫

∞

0
dωF(ω)

s+ i(ω−ωc)

. (8)

By performing the inverse Laplace transformation, A(t) = (2πi)−1 ∫ σ+i∞
σ−i∞ dsest Ã(s) (see e.g. [3] for more details), we get

the formal solution for the cavity amplitude A(t) which is as follows

A(t)=
ei(ωc−iγ)t

2πi

∫
σ+i∞

σ−i∞

estds

s+κ− γ + iωc +Ω2
∫

∞

0
dωF(ω)

s+ iω

, (9)

where σ > 0 is chosen such that the real parts of all singularities of Ã(s) are smaller than σ . It turned out that the integral

in the denominator of Eq. (9) has a jump when passing across the negative part of the imaginary axis leading to the branch

cut in the complex plane of s (see Fig. 1). By setting the denominator of the integrand in Eq. (9) to zero, one can derive the
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(a) (b)
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S 2 Route from strong coupling to multimode strong coupling regime for two different coupling strengths, Ω/2π = 8 MHz (left column)

and Ω/2π = 26 MHz (right column). Upper row: Kernel function U(ω). Lower row: Nonlinear Lamb shift δ (ω) for the same ω-interval

as above (note the different zooms for the two columns). Left column: Strong coupling regime with a well-resolved Rabi splitting in

U(ω) (regime of damped Rabi oscillations). Right column: Multimode strong coupling regime with a multi-peak structure in U(ω)

when all seven spin ensembles are effectively coupled to the cavity (regime of revivals). Filled circles label resonance values ωr of

the kernel U(ω) occurring at the intersections between the Lamb shift δ (ω) and the dashed line (ω−ωc)/Ω2. At empty circles such

intersections are non-resonant and do not lead to a corresponding peak in U(ω). The cavity frequency ωc coincides with the mean

frequency of the central q-Gaussian, ωs = ωc, shown in Fig. 1(a) of the main article.

equations for simple poles, s j = σ j + iω j, which, however, do not appear for the spectral function shown in Fig. 1(a) of the

main paper and will not be discussed here (see [2] for more details about poles’ contribution).

Next, we apply Cauchy’s theorem to a closed contour to evaluate the formal integral (9) taking into account that only a

few paths of those shown in Fig. S1 contribute. Finally, we end up with the following expression for the cavity amplitude

A(t) = Ω
2
∫

∞

0
dωe−i(ω−ωc−iγ)tU(ω), (10)

where

U(ω) = lim
σ→0+

{
F(ω)

(ω−ωc−Ω2δ (ω)+i(κ− γ))2+(πΩ2F(ω)+σ)2

}
. (11)

is the kernel function and

δ (ω) = P
∫

∞

0

dω̃F(ω̃)

ω−ω̃
(12)

has the meaning of the nonlinear Lamb shift of the cavity frequency ωc, which depends on the total spectral distribution,

F(ω).
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Obviously, the relevant frequency components contributing to the dynamics of A(t) are those which are resonant in the

kernel function U(ω). As it can be deduced from the structure of U(ω) given by Eq. (11), a necessary condition for such

resonances to show up strongly depends on the structure of the Lamb shift and the value of the coupling strength. Namely,

it is given by the following approximate formula, (ωr−ωc)/Ω2 ≈ δ (ωr). At small values for the coupling strength Ω the

straight line (ωr−ωc)/Ω2 becomes very steep and thus leads just to a single intersection with δ (ωr). As a result, a single

resonance occurs at ωr ≈ ωc, so that only the central spin ensemble contributes to the coupling with the cavity, whereas the

others yield a negligible contribution. In this case the kernel function U(ω) can be well approximated by a Lorentzian

centered around the slightly shifted cavity frequency ωc +Ω2δ (ωc). We will thus deal with the exponential decay of the

cavity amplitude A(t) in the time domain with a decay rate depending on Ω. Actually this regime is very similar to the

Purcell enhancement of the spontaneous emission rate of a single emitter inside a cavity [4]. As the coupling strength

reaches a certain critical value, the straight line intersects the nonlinear Lamb shift at three points from which only two give

rise to the resonances in U(ω). As a consequence, the kernel function U(ω) consists of two well-separated polaritonic

peaks, which is the hallmark of the strong coupling regime of cavity QED (see the left column in Fig. S2). Note that these

two resonances still reside in the vicinity of the cavity frequency and the contribution of all but the central ensemble is

rather small.

The situation changes qualitatively at higher values of the coupling strength Ω, when the straight line also intersects the

other distant resonances of the Lamb shift, as is seen from the right column in Fig. S2. As a result, the kernel function

U(ω) forms a comb-shaped structure with almost equally spaced polaritonic peaks at frequencies which are shifted with

respect to the resonances of the spectral function F(ω). It is worth noting, that such a communication of the cavity mode

with distant resonances of F(ω) would never take place if the Lamb shift were approximated by its value at the cavity

frequency, δ (ωc).

Supplementary Note 4. Eigenvalue problem

To solve the eigenvalue problem we first discretize the spectral function F(ω) (see Fig. 1 in the main article) by

performing the following transformation:

gl =

[
F(ωl) · (

M

∑
µ=1

Ω
2
µ)/∑

m
F(ωm)

]1/2

. (13)

Since in total we deal with a sizeable number of spins, we make our problem numerically tractable by dividing spins into

many subgroups with approximately the same coupling strengths, so that gl in Eq. (13) represents a coupling strength

within each subgroup rather than an individual coupling strength. Note also that once a shape of the spectral function F(ω)

is defined, it is not relevant anymore to which ensemble an individual spin belongs to. By doing so we get the following

linear set of first-order ODEs with respect to the cavity and spin amplitudes from Eqs. (1a,1b) (η(t) = 0)

Ȧ(t) =−κ ·A(t)+∑
l

glBl(t) (14a)

Ḃl(t) =− [γ + i(ωl−ωc)]Bl(t)−glA(t), (14b)

Copyright line will be provided by the publisher
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where A(t)≡ 〈a(t)〉 and Bl(t)≡ 〈σ−l (t)〉. After substituting A(t) = A · exp(−λ t) and Bl(t) = Bl · exp(−λ t) into Eqs. (14a,

14b), we derive the complex eigenvalue problem for λ , which can be represented as, L ψ = λψ , where

L =



κ −g1 −g2 ... −gN

g1 γ + i(ω1−ωc) 0 ... 0

g2 0 γ + i(ω2−ωc) ... 0

... ... ... ... ...

gN 0 0 ... γ + i(ωN−ωc)


,

and ψ = (A B1 B2 ... BN)
T .
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Ensembles of quantum-mechanical spins offer a promising platform for quantum memories, but proper
functionality requires accurate control of unavoidable system imperfections. We present an efficient control
scheme for a spin ensemble strongly coupled to a single-mode cavity based on a set of Volterra equations
relying solely on weak classical control pulses. The viability of our approach is demonstrated in terms of explicit
storage and readout sequences that will serve as a starting point towards the realization of more demanding full
quantum-mechanical optimal control schemes.

DOI: 10.1103/PhysRevA.96.043837

I. INTRODUCTION

In the past decade we have witnessed tremendous progress
in the implementation of elementary operations for quantum
information processing. Single-qubit gates can be realized
with fidelities reaching 1–10−6 [1] and also two-qubit gates
can be implemented in a variety of systems [2,3]. With all
these elements at hand, it is nowadays possible to implement
quantum algorithms on architectures with a few qubits (on
the order of five) [4] and to engineer quantum metamaterials
based on an ensemble of superconducting qubits coupled
to a microwave cavity [5,6]. Implementing quantum logics
on larger architectures, however, will most likely require a
separation between quantum processing units and quantum
memory units, where qubits in the former units admit fast
gate operations and the qubits in the latter units offer long
coherence times.

Since extended coherence times naturally imply weak
interactions with other degrees of freedom, the sufficiently
fast swapping of quantum information between processing
and memory units is a challenging task. The most promising
route to overcome slow swapping is the encoding of quantum
information as a collective excitation in a large ensemble
composed of many (N ) constituents, since this increases
the swapping speed by a factor of

√
N . Among promising

realizations of such ensembles, those based on spins, atoms,
ions, or molecules are of particular interest [7–13]. In many
cases, however, system imperfections result in broadening
effects giving rise to rapid dephasing of ensemble constituents,
a restriction that limits the coherence times of such collective
quantum memories.

As a result, various protocols to ensure the controlled
and reversible temporal dynamics in the presence of inho-
mogeneous broadening were recently the subject of many
studies. One of the proposed techniques in this context is
the so-called controlled reversible inhomogeneous broadening
approach [14–16], which is based on a rather subtle preparation
method and on the inversion of atomic detunings during the
temporal evolution. Most of the techniques developed for
this purpose are based on photon-echo-type approaches in

*dmitry.krimer@gmail.com

cavity or cavityless setups, such as those dealing with spin
refocusing [17,18], with atomic frequency combs [19–24],
or with electromagnetically induced transparency [25]. Tra-
ditionally, these architectures operate in the optical region and
require additional high-intensity control fields. The resulting
large number of excitations is prone to spoil the delicate
quantum information that is encoded in states with extremely
low numbers of excitations. It would therefore be much better
to work with low-intensity control fields, which, however,
have the other problem to become easily correlated with the
quantum memory. For the identification of control strategies,
this implies that one may no longer treat the many different
memory spins as independent objects, but that the (macroscop-
ically) large ensemble needs to be described by a quantum
many-body state. This makes any description of dynamics and
an identification of control strategies a seemingly hopeless
task.

In this paper we develop a very efficient semiclassical
optimization technique based on a set of Volterra integral
equations, which allows us to write information into a
large, inhomogeneously broadened spin ensemble coupled
to a single-cavity mode by means of optimized classical
microwave pulses and to retrieve it at some later time in
the form of well-separated cavity responses. In contrast to
established echo techniques, our scheme only involves low-
intensity signals and therefore diminishes the influence of
noise caused by writing and reading pulses. The applicability
of our approach is also demonstrated in conjunction with
a spectral hole-burning technique [26–28] that allows us to
reach storage times going far beyond the dephasing time
of the inhomogeneously broadened ensemble. Importantly,
the Volterra equation exactly governs the resulting linear
non-Markovian dynamics not only in the semiclassical but also
in the pure quantum case for the particular situation without
external drive, when all spins are initially in the ground state
and the cavity contains initially a single photon [26,28,29].
Furthermore, the system’s density function or nonequilibirum
Green’s functions, which show up in the framework of a full
quantum-mechanical description, also satisfy mathematically
similar integro-differential Volterra equations [30,31]. Hence,
although the problem is treated semiclassically in what
follows, we believe that our approach can be generalized to
pure quantum regimes as well in which case the inclusion of the

2469-9926/2017/96(4)/043837(10) 043837-1 ©2017 American Physical Society
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FIG. 1. Schematics of a single-mode cavity characterized by
a frequency ωc and a loss rate κ , coupled to an ensemble of
two-level atoms (spheres) with transition frequencies ωk and a loss
rate γ � κ . Curves designate optimized input and (nonoverlapping)
output signals.

transient two-time correlation function of the cavity operator
between the write and the readout may be needed, an issue that
will be postponed for future studies.

II. THEORETICAL MODEL

To be specific, we consider an ensemble of spins strongly
coupled to a single-mode cavity via magnetic or electric dipole
interaction as sketched in Fig. 1. All typical parameter values
are chosen here in accordance with the recent experiment [29],
the dynamics of which can be excellently described by the
Tavis-Cummings Hamiltonian [32] (in units of h̄)

H = ωca
†a + 1

2

∑N

j
ωjσ

z
j + i

∑N

j
[gjσ

−
j a† − g∗

j σ
+
j a]

− i[η(t)a†e−iωpt − η(t)∗aeiωpt ]. (1)

Here σ±
j and σ z

j are the Pauli operators associated with
each individual spin of frequency ωj and a† and a are
creation and annihilation operators of the single cavity mode
with frequency ωc. An incoming signal is characterized by
the carrier frequency ωp and by the envelope η(t). The
interaction part of H is written in the dipole and rotating-wave
approximation (terms proportional to aσ−

j and a†σ+
j are

neglected), where gj is the coupling strength of the j th spin.
The distance between spins is assumed to be large enough such
that the direct dipole-dipole interactions between spins can
be neglected. Furthermore, the large number of spins allows
us to enter the strong-coupling regime of cavity QED with
the collective coupling strength � = (

∑N
j g2

j )1/2 [33], which
leads to the enhancement of a single coupling strength gj by a
factor of

√
N (N ≈ 1012 in [29]).

We are aiming at the transfer of information from the cavity
to the spin ensemble, its storage over a well-defined period of
time, and its transfer back to the cavity. Our control scheme
thus consists of a write and readout section, with a variable
delay section in between. Starting from a polarized state with
all spins in their ground state, we construct (i) two write pulses
η

(W )
|0〉 (t) and η

(W )
|1〉 (t) that encode the respective logical states |0〉

and |1〉 in the spin ensemble. During the delay section (ii) the
information is subject to dephasing by the inhomogeneous
ensemble broadening and the external drive is optimized here

to reduce the cavity amplitude A(t) ≡ 〈a(t)〉 (to prevent the
information in the spin ensemble from leaking back to the
cavity prematurely). In the readout section (iii) we switch on
the readout pulse η(R)(t) [with substantially lower power than
η

(W )
|0/1〉(t)] that maps the two logical states of the spin ensemble

on two mutually orthogonal states of the cavity field, expressed
by the cavity amplitude A

(R)
|0〉 (t) or A

(R)
|1〉 (t), respectively. Note

that the write pulses (i) are specific for the input states |0〉 and
|1〉, but pulses (ii) and (iii) are generic as they are designed
without prior knowledge of the information stored in the
ensemble. [For the sake of simplicity we formally absorb the
delay pulse into η(R)(t).] The goal of our work is to find optimal
time-dependent choices for η

(W )
|0〉 (t), η

(W )
|1〉 (t), and η(R)(t) such

that A
(R)
|0〉 (t) and A

(R)
|1〉 (t) have minimal temporal overlap in

analogy to time-binned qubits where information is stored in
the occupation amplitudes of two well-distinguishable time
bins [20,34].

We describe the dynamics by deriving the equations for the
spin and cavity expectation values 〈σ−

k (t)〉 and A(t) under the
Holstein-Primakoff-approximation [35] (〈σ (z)

k 〉 ≈ −1) valid in
the regime of weak driving powers (the number of the excited
spins is always small compared to the ensemble size). This
allows us to formally express 〈σ−

k (t)〉 as a time integral with
respect to A(t) and to develop an efficient framework in terms
of Volterra equations that relate cavity amplitudes A(t) and
pump profiles η(t) [36],

A(t) =
∫ t

0
dτ K(t − τ )A(τ ) + D(t), (2)

where D(t) depends on the time integral of the driving signal
and on the initial conditions for the cavity amplitude as well as
of the spin ensemble. The memory kernel function K(t − τ ),
which is responsible for the non-Markovian feedback of
the spin ensemble on the cavity, is proportional to the
collective coupling strength �2 and explicitly depends on a
spectral spin distribution characterized by a function ρ(ω)
(see Appendix A). When switching on a constant drive, the
system exhibits damped oscillations characterized by the Rabi
frequency �R ≈ 2� and the total decoherence rate 
 mostly
determined by the dephasing caused by the inhomogeneous
broadening of the spin ensemble [36].

A consequence of the linearity of the governing Volterra
equations is that for two pump profiles η1/2(t), resulting in the
two cavity amplitudes A1/2(t), any coherent superposition of
these pulses c1η1(t) + c2η2(t) will result in the corresponding
cavity amplitudes c1A1(t) + c2A2(t).

The Volterra equation for the cavity amplitude is physically
the classical correspondence of the Heisenberg cavity spin
equations on the level of expectation averages after elimination
of the spin ensemble variables (see Appendix A). However, as
was demonstrated in [26,29,37], the Volterra equation also
governs quantum spin–cavity dynamics for the particular case
when all spins are initially in the ground state and the cavity
contains initially a single photon. Therefore, we take the
amplitude of the write pulses η

(W )
|0/1〉(t) such that the net power

injected into the cavity corresponds to the power of a coherent
driving signal with an amplitude equal to the cavity decay
rate κ . The latter prepares on average a single photon in
the empty cavity for stationary transmission experiments (see
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Appendix D for details). Due to the linearity of the Volterra
equations, also rescaling their solutions by a global prefactor
leaves them perfectly valid.

III. OPTIMAL CONTROL SCHEME

As a first step we need to find optimal write and readout
pulses that prepare the logical spin ensemble configurations
|0〉 and |1〉 and map them onto well-distinguishable cavity
responses. We do this through the optimization of a func-
tional, which ensures the minimal overlap between the cavity
amplitudes A

(R)
|0〉 (t) and A

(R)
|1〉 (t) of the logical states |0〉 and |1〉

in the readout section by exploring various temporal shapes of
both the write pulses η

(W )
|0/1〉(t) and of the readout pulse η(R)(t).

In practice we expand all involved driving pulses in a basis of
trial functions sin(nωf t) (n = 1,2, . . .) with the fundamental
frequency ωf defined as the inverse of the time duration of
the write or readout section counted in multiples of half the
Rabi period π/�R . Next we construct the functional defined
as the time-overlap integral between A

(R)
|0〉 (t) and A

(R)
|1〉 (t) in the

readout section. We then search the functional’s minima under
several constraints considering the expansion coefficients as
unknown variables using the standard method of Lagrange
multipliers (see Appendixes A and B). Due to the linearity
of governing equations with respect to the control pulses this
procedure, as shown in Appendix B, is numerically highly
efficient since the time integration of the Volterra equations can
be performed independently of the subsequent optimization of
the expansion coefficients of the control pulses.

A typical result of this optimization (first without a delay
section) is depicted in Fig. 2 (left column), where the
amplitudes of all optimized pulses as well as those of the
resulting cavity responses are depicted. One can indeed see that
the two different configurations stored in the spin ensemble,
|0〉 and |1〉, are retrieved by the same readout pulse in the form
of two well-separated cavity responses. The storage efficiency
can be quantified in terms of the ratio of integrated cavity
amplitudes during the readout and write section, which turns
out to be ≈40% for the configurations |0〉 and |1〉 shown in
Fig. 2 (left column).

The bottleneck for extended information storage times in
the ensemble is its inhomogeneous broadening, as determined
by the continuous spectral density ρ(ω) appearing in our
theoretical description. Specifically, the total decoherence
rate in the limit of strong coupling (when � > 
) can be
estimated as 
 ≈ κ + π�2ρ(ωs ± �) [36,37], indicating that
the dominant contribution to 
 stems from the spectral density
ρ(ω) at frequencies close to the maxima of the two polaritonic
peaks ω = ωs ± �. To suppress this decoherence rate 
 it
is thus advisable to work with spin ensembles having a
spectral density that falls off faster than 1/�2 in its tails
such that 
 → κ for large �. The corresponding cavity
protection effect [36–38] has meanwhile been demonstrated
also experimentally [29], but has the drawback of requiring
prohibitively large coupling strengths to take full effect.
Alternatively, one can burn two narrow spectral holes at
frequencies close to ωs ± �, during a preparatory step for
t � 0. This technique [26–28] was recently shown to be
both easily implementable and very efficient in suppressing
the decoherence rate 
 even below the bare cavity decay

rate κ [27]. Incorporating this hole-burning protocol in the
present analysis allows us to increase the dephasing time
from 1/
 ∼ 75 ns [the case shown in Fig. 2 (left column)] to
microsecond time scales [see Fig. 2 (right column)] for which
we can now meaningfully introduce a delay section in between
the write and the readout section. In Fig. 2 (right column) we
show that with parameters taken from recent experiments [27]
we can extend the storage time and thereby our method’s
temporal range of control beyond 1 μs. Evidently, such an
extension of the storage time comes with a reduced efficiency,
which is here as large as 5%.

With these long coherence times we can now proceed
to the main goal of storing coherent superpositions of the
two spin configurations |0/1〉. Those can be created by the
corresponding superposition η(W )(t) = αη

(W )
|0〉 (t) + βη

(W )
|1〉 (t) of

the respective write pulses and, ideally, the corresponding
superposition of time-binned cavity responses would be ob-
served under the application of the readout pulse η(R)(t). Since
the cavity response is of the form A(R)(t ; α,β) = αÃ

(R)
|0〉 (t) +

βÃ
(R)
|1〉 (t) + Ã(R)(t), where the two cavity responses Ã

(R)
|0/1〉(t)

only depend on the stored spin configurations |0/1〉 and Ã(R)(t)
is the response induced by the readout pulse, the desired
superposition of cavity outputs is obtained if the readout
pulse satisfies (α + β)η(R)(t) = η(R)(t) (see Appendix B).
Together with the normalization |α|2 + |β|2 = 1, this implies
that for the amplitudes αx = 1 − x ± i

√
x(1 − x) and βx =

x ∓ i
√

x(1 − x) with x ∈ [0,1] the desired cavity response
will be obtained. As a result, the proposed storage sequence
works not only for the two logical basis states |0/1〉, but, indeed
for a one-dimensional set of coherent superpositions, such as
for a rebit [34,39].

Note that when being only interested in reading out the
parameters α and β (and not in further processing the re-
sulting cavity response) one is not restricted by the above
rebit parametrization, but has the full qubit parameter space
at one’s disposal. As we show in Appendix B, α and
β can be unambiguously determined through the time-
overlap integrals defined only in the readout section [τa,τc]
as O0/1 = ∫ τc

τa
dt A(R)(t ; α,β)A(R)∗

|0/1〉(t), where A
(R)
|0/1〉(t) =

Ã
(R)
|0/1〉(t) + Ã(R)(t).
In principle, this information retrieval is exact, but noise

(which is not included in the previous theoretical modeling)
affects the readout if it reaches values comparable to the
cavity amplitudes. Therefore, in the next line of our study we
examine the robustness of our optimal control scheme against
possible noise. For that purpose, we subject the previously
established optimized pulses η

(W )
|0/1〉(t) and η(R)(t) to a small

perturbation by adding Gaussian white noise as an additional
driving term in our Volterra equations (see Appendix C). We
treat the problem numerically using well-established methods
for integrating stochastic differential equations (see, e.g., [40])
and accumulate statistics by evaluating many trajectories for
different noise realizations. We then average the resulting
retrieved values with respect to noise realizations and calculate
the absolute retrieval errors as the deviation from the input
configuration, εα = |α − 〈αR〉| and εβ = |β − 〈βR〉|. The
typical results of our calculations are displayed in Fig. 3. It
turns out that εα and εβ scale approximately linearly with
the noise amplitude and, e.g., the maximal absolute error
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FIG. 2. Preparation of the spin ensemble configurations |0〉 and |1〉 for a spin density ρ(ω) = C[1 − (1 − q)(ω − ωs)2/�2]1/(1−q)

following a q-Gaussian distribution with q = 1.39 centered around the cavity frequency ωs = ωc and a full width at half maximum
γq = 2�

√
(2q − 2)/(2q − 2) = 2π × 9.4 MHz. This form for ρ(ω) was established in our previous studies by a careful comparison with

the experiment [29,36]. The right column shows that two holes were burnt into ρ(ω) at frequencies ωs ± � (two arrows in the inset) to suppress
decoherence [26,27] and to make room for a delay section (white area) between the write [green area (light gray)] and readout (gray area)
sections. [In the inset ρ(ω) is plotted in units of ω−1

s .] The top and middle rows show real [blue (dark gray) and orange (light gray), respectively]
and imaginary parts [cyan (light gray) and brown (dark gray), respectively] of the optimized write pulse η

(W )
|0/1〉(t) for state |0/1〉 and of the generic

readout pulse η(R)(t) (black and gray). The bottom row shows the cavity probability amplitude squared |A(t)|2 for the resulting nonoverlapping
cavity responses A

(R)
|0〉 (t) [blue (dark gray)] and A

(R)
|1〉 (t) [orange (light gray)]. The carrier frequency of all pulses ωp = ωc = 2π × 2.6915 GHz

and the coupling strength �/2π = 12.5 MHz. The ratio of the powers between the readout and write pulses is 0.068 (0.013) for the case
without (with) hole burning. The amplitudes of all pulses (top and middle rows) are presented in units of κ/2π = 0.4 MHz.

of retrieval shown in Fig. 3 is at most 0.02 for 200 noise
realizations when taking the noise amplitude to be 5% of the
incoming amplitude of the write pulse. These results confirm
the robustness of our approach with respect to possible noise
in a real physical system.

IV. CONCLUSION AND OUTLOOK

We have presented a very efficient optimization technique
applicable to different experimental realizations based on
an inhomogeneously broadened spin ensemble coupled to
a single cavity mode. Generalizing this scheme to the full
quantum-mechanical level is the obvious next step to make
our protocol an essential building block for the development
of future optimal control schemes with the perspective of
advancing the storage capabilities for quantum information.
Given the extremely unfavorable scaling properties of com-
posite quantum systems with particle number, any theoretical
description of a quantum many-body system is an extremely
challenging task. Since the identification of optimal control
strategies is much harder than the mere description of a
system’s dynamics (the latter is naturally required for the
former), optimal control is typically a viable option for rather
small systems only. With our highly efficient semiclassical
control technique for the non-Markovian dynamics of large
hybrid quantum systems in the presence of inhomogeneous
broadening, we demonstrate the capabilities and limitations of
these systems for potential information storage.

ACKNOWLEDGMENTS

We would like to thank H. Dhar and M. Zens for helpful
discussions and acknowledge support by the Austrian Science
Fund (FWF) through Project No. F49-P10 (SFB NextLite).

F.M. acknowledges support from the European Research
Council grant “odycquent.”

D.O.K. and B.H. contributed equally to this work.

APPENDIX A: VOLTERRA EQUATION FOR
THE CAVITY AMPLITUDE

Our starting point is the Hamiltonian (1) of the main
text from which we derive the Heisenberg equations for
the cavity and spin operators ȧ(t) = i[H,a(t)] − κa(t) and
σ̇−

k (t) = i[H,σ̇−
k (t)] − γ σ−

k (t), respectively. Here a stands for
the cavity annihilation operator and σ−

k are standard downward
Pauli operators associated with the kth spin; κ and γ are the
dissipative cavity and individual spin losses, respectively. (All
notation is consistent with that introduced in the main text.)
During the derivations we use the following simplifications and
approximations valid for various experimental realizations: (i)
kBT � h̄ωc (the energy of photons of the external bath kBT

is substantially smaller than that of cavity photons h̄ωc); (ii)
the number of microwave photons in the cavity remains small
as compared to the total number of spins participating in the
coupling (limit of low input powers of an incoming signal),
so the Holstein-Primakoff-approximation 〈σ (z)

k 〉 ≈ −1 always
holds; (iii) the effective collective coupling strength of the spin
ensemble �2 = ∑N

k=1 g2
k (gk stands for the coupling strength

of the kth spin) satisfies the inequality � � ωc, justifying the
rotating-wave approximation; (iv) the spatial size of the spin
ensemble is sufficiently smaller than the wavelength of a cavity
mode. Having introduced all these assumptions, we derive
the following system of coupled first-order linear ordinary
differential equations for the cavity and spin amplitudes in the
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FIG. 3. (a) Retrieved cavity amplitude in the readout section,
resulting from a superposition of write pulses αxA

(R)
|0〉 (t) + βxA

(R)
|1〉 (t)

(normalized to a maximum value of 1) in the absence of noise with
the write amplitude η0 = κ . We used the rebit parametrization αx and
βx (see the text) from x = 0 to 1 in steps of 0.25 (with the same
parameters as in Fig. 2, left column). Also shown are the retrieved
average values (b) 〈αR〉 and (c) 〈βR〉 (only real parts are shown)
from the resulting solution A(R)(t ; α,β) in the presence of noise.
The averaging is performed with respect to 200 noise realizations
for a noise amplitude δη/η0 = 0.05. The input configurations are
parametrized as α = cos(ϑ/2) and β = sin(ϑ/2)eiϕ with ϑ ∈ [0,π ]
and ϕ ∈ [0,2π ]. (d) Reconstructed Bloch sphere with spatial compo-
nents ri = (〈αR〉∗,〈βR〉∗)σi(〈αR〉,〈βR〉) for i = x,y,z, evaluated from
the retrieved averaged parameters taken from (b) and (c), where
σi is the ith Pauli matrix. The symbols in (b)–(d) emphasize the
rebit encoding from (a). The reference configurations |0/1〉 are
taken from the left column of Fig. 2. (e) Maximum of the absolute
errors εα = |α − 〈αR〉| and εβ = |β − 〈βR〉| in retrieval of the input
configurations for different noise amplitudes δη. Vertical dashed line
shows the noise level of the calculations in (b)–(d).

ωp-rotating frame:

Ȧ(t) = −[κ + i�c]A(t) +
N∑

k=1

gkBk(t) − η(t), (A1)

Ḃk(t) = −[γ + i�k]Bk(t) − gkA(t), (A2)

where A(t) ≡ 〈a(t)〉 and Bk(t) ≡ 〈σ−
k (t)〉. In addition, �c =

ωc − ωp and �k = ωk − ωp are the detunings with respect to
the probe frequency ωp.

By formally integrating Eq. (A2) with respect to time for
the spin operators and inserting them into Eq. (A1) for the
cavity operator, we get

Ȧ(t) = −[κ + i�c]A(t) +
N∑

k=1

gkBk(T1) e−[γ+i�k ](t−T1)

−�2
∫ ∞

0
dω ρ(ω)

∫ t

T1

dτ A(τ )e−[γ+i�ω](t−τ ) − η(t),

(A3)

FIG. 4. Schematics of the time divisions of the cavity amplitude
A(n)(t). The input field η(n)(t) is applied to the system in the time in-
terval [Tn,Tn+1] and drives the corresponding cavity amplitude A(n)(t)
(indicated by vertical arrows). The non-Markovian contributions
from previous time intervals [Tn−1,Tn] are indicated by horizontal
arrows.

where �ω = ω − ωp, Bk(T1) is the initial spin amplitude
at t = T1, and ρ(ω) = ∑N

k=1 g2
k δ(ω − ωk)/�2 stands for the

continuous spectral spin distribution. As in our previous
studies [29,36], we take into account the effect of an inho-
mogeneous broadening by modeling the spin density with a q-
Gaussian shape ρ(ω) = C[1 − (1 − q)(ω − ωs)2/�2]1/(1−q),
distributed around the mean frequency ωs/2π = 2.6915 GHz
with the parameter q = 1.39 and a full width at half maximum
γq/2π = 9.4 MHz, where γq = 2�

√
(2q − 2)/(2q − 2).

Next we formally integrate Eq. (A3) in time and simplify
the resulting double integral on the right-hand side by partial
integration. We also consider the case when the cavity is
initially empty A(T1) = 0 and all spins are in the ground
state Bk(T1) = 0. To speed up our numerical calculations and
to separate different time sections from each other (see the
main text and Appendix B for details), we divide the whole
time integration into successive subintervals Tn � t � Tn+1,
with n = 1,2, . . . (see Fig. 4). This allows us to derive the
recurrence relation for the cavity amplitude for the nth time
interval A(n)(t), which depends on all previous events at t < Tn.
Finally, we end up with the expression for A(n)(t),

A(n)(t) =
∫ t

Tn

dτ K(t − τ )A(n)(τ ) + D(n)(t) + F (n)(t), (A4)

where the non-Markovian feedback within the nth time interval
is provided by the kernel function K(t − τ ),

K(t − τ ) = �2
∫ ∞

0
dω ρ(ω)

e−[γ+i�ω](t−τ ) − e[κ+i�c](t−τ )

[γ + i�ω] − [κ + i�c]
.

(A5)

The driving term D(n)(t) in Eq. (A4),

D(n)(t) = −
∫ t

Tn

dτη(n)(τ )e−[κ+i�c](t−τ ), (A6)

includes an arbitrarily shaped, weak incoming pulse η(n)(t),
defined in the time interval [Tn,Tn+1]. The memory contribu-
tions from all previous time intervals for t < Tn are given both
through the amplitude A(n−1)(Tn) and through the memory
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integral I (n)(ω), which are contained in the function

F (n)(t) =
{
A(n−1)(Tn)e−[κ+i�c](t−Tn) + �2

∫ ∞

0
dω ρ(ω)

e−[γ+i�(ω)](t−Tn) − e−[κ+i�c](t−Tn)

[γ + i�ω] − [κ + i�c]
I (n)(ω)

}
, (A7)

where

I (n)(ω) = I (n−1)(ω)e−[γ+i�ω](Tn−Tn−1) +
∫ Tn

Tn−1

dτ A(n−1)(τ )e−[γ+i�ω](Tn−τ ). (A8)

In accordance with the initial conditions introduced above at
t = T1, A(0)(T1) = 0 and I (1)(ω) = 0, so F (1)(t) vanishes in
the first time interval F (1)(t) = 0 (T1 � t � T2).

APPENDIX B: OPTIMAL CONTROL BASED ON THE
VOLTERRA EQUATION

In the main text we split our time interval into two parts,
a write and readout section, with a variable delay section
in between. In the write section, two independent optimized
write pulses η(W )(t) prepare two different configurations of
the spin ensemble, which are referred to as logical states
|0〉 and |1〉 of the spin ensemble. It is followed by the delay
section characterized by almost completely suppressed cavity
responses and finally by the readout section where two logical
states of the spin ensemble are retrieved and mapped on two
mutually orthogonal states of the cavity field by means of the
readout pulse η(R)(t) (see Fig. 5). Note that the optimized
readout pulse is generic, being the same for both |0〉 and
|1〉 states. For the sake of simplicity, we do not explicitly
specify the delay pulse but impose on the readout pulse η(R)(t)
a constraint such that the cavity responses are maximally
suppressed in the delay section [T2,τa] (see Fig. 5). Thus, the
write and readout pulses are defined within the time intervals
[T1,T2] and [T2,T3], respectively, in terms of the notations
introduced in Appendix A and the delay section is formally
absorbed into the readout section.

We then expand η(W )(t) and η(R)(t) in terms of sine
functions

η(W )(t) =
N1∑
k=1

ξk sin[kωf (t − T1)], (B1)

η(R)(t) =
N2∑
l=1

ζl sin[lωf (t − T2)], (B2)

FIG. 5. Time divisions for the optimization scheme of the cavity
responses A

(R)
|0〉 (t) and A

(R)
|1〉 (t). The write section [T1,T2] is followed

by the variable delay section [T2,τa] and the readout section [τa,τc].
The cavity responses A

(R)
|0〉 (t) and A

(R)
|1〉 (t) reside in the first half [τa,τb]

and the second half [τb,τc] of the readout section, respectively.

where ξk and ζl are the expansion coefficients and ωf is the
fundamental frequency. The linear property of the Volterra
equation (A4) allows us to expand the cavity amplitude in the
write section A(W )(t) in a series of time-dependent functions
with the same expansion coefficients ξk as in Eq. (B1),

A(W )(t) =
N1∑
k=1

ξka
(W )
k (t). (B3)

Here a
(W )
k (t) are solutions of the Volterra equation

a
(W )
k (t) =

∫ t

T1

dτ K(t − τ )a(W )
k (τ )

−
∫ t

T1

dτ sin[kωf (τ − T1)]e−[κ+i�c](t−τ ), (B4)

where the kernel function K(t − τ ) is given by Eq. (A5).
The solution in the readout section A(R)(t) in turn consists

of two contributions

A(R)(t) =
N2∑
l=1

ζla
(R)
l (t) +

N1∑
k=1

ξkψ
(R)
k (t). (B5)

Similar to the ansatz for the write section, the first term in
Eq. (B5) also contains the same expansion coefficients ζl as
the corresponding driving signal in the readout section [see
Eq. (B2)] with the time-dependent functions a

(R)
l (t) obeying

the Volterra equation (T2 � t � T3)

a
(R)
l (t) =

∫ t

T2

dτ K(t − τ )a(R)
l (τ )

−
∫ t

T2

dτ sin[lωf (τ − T2)]e−[κ+i�c](t−τ ). (B6)

Additionally, the second term in Eq. (B5) describes the non-
Markovian memory and appears in the readout section due to
the energy stored in both the cavity and spin ensemble during
the time interval T1 � t � T2 (write section). Therefore, it
depends only on the coefficients ξk of the write pulse (B1) and
the time-dependent functions ψ

(R)
k (t), which can be found by

substituting the expressions (B3) and (B5) into Eqs. (A4)–(A8)
for n = 2. It can be shown that these functions satisfy the
Volterra equation

ψ
(R)
k (t) =

∫ t

T2

dτ K(t − τ )ψ (R)
k (τ ) + f

(R)
k (t), (B7)
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with the feedback from the previous write section defined by

f
(R)
k (t) = a

(W )
k (T2)e−[κ+i�c](t−T2) + �2

∫ ∞

0
dω ρ(ω)

e−[γ+i�ω](t−T2) − e−[κ+i�c](t−T2)

[γ + i�ω] − [κ + i�c]

∫ T2

T1

dτ a
(W )
k (τ )e−[γ+i�ω](T2−τ ). (B8)

Note that the a
(W )
k (t) in Eq. (B8) are defined in the write section

only and are known solutions of Eq. (B4).
In the main text we use two different pulses

η
(W )
|0〉 (t) = ∑N1

k=1 ξ
|0〉
k sin[kωf (t − T1)] and η

(W )
|1〉 (t) =∑N1

k=1 ξ
|1〉
k sin[kωf (t − T1)] in the write section, which

are characterized by two sets of expansion coefficients from
Eq. (B1). As a result, the cavity amplitudes in the write section
are also represented by these sets of expansion coefficients
and are given by Eq. (B3), namely,

A
(W )
|0〉 (t) =

N1∑
k=1

ξ
|0〉
k a

(W )
k (t),

A
(W )
|1〉 (t) =

N1∑
k=1

ξ
|1〉
k a

(W )
k (t). (B9)

Note that by injecting these pulses into the cavity, we create
two independent configurations (denoted by |0〉 and |1〉) of
the spin-cavity system at the beginning of the readout interval
t = T2.

Next we perform a readout by applying a single optimized
readout pulse (B2), which is the same for the states |0〉 and
|1〉. The cavity amplitudes in the readout section in turn are
governed by Eq. (B5) as

A
(R)
|0〉 (t) =

N2∑
l=1

ζla
(R)
l (t)

︸ ︷︷ ︸
Ã(R)(t)

+
N1∑
k=1

ξ
|0〉
k ψ

(R)
k (t)

︸ ︷︷ ︸
Ã

(R)
|0〉 (t)

,

A
(R)
|1〉 (t) =

N2∑
l=1

ζla
(R)
l (t)

︸ ︷︷ ︸
Ã(R)(t)

+
N1∑
k=1

ξ
|1〉
k ψ

(R)
k (t)

︸ ︷︷ ︸
Ã

(R)
|1〉 (t)

, (B10)

where Ã(R)(t) describes the contribution from the readout pulse
only, which is the same for both cavity responses and the two
other terms Ã

(R)
|i〉 (t) (i = 0,1) explicitly depend on the states |0〉

and |1〉 created in the write section. Thus, the cavity amplitude
is determined at every moment of time by Eqs. (B3)–(B8) (and,
as a consequence, all spin configurations), if all expansion
coefficients ξ

|0〉
k , ξ

|1〉
k , and ζl are provided.

As the next step we develop an optimization scheme aiming
at achieving two well-resolved cavity responses in the readout
section, A

(R)
|0〉 (t) and A

(R)
|1〉 (t), as is sketched in Fig. 5. (The

results of numerical calculations are presented in Fig. 2.)
For this purpose we use the standard method of Lagrange
multipliers by introducing the functionalF(ξ |0〉

k ,ξ
|1〉
k ,ζl) subject

to several constraints listed below and search for its minima
with respect to the expansion coefficients of all three pulses.

Namely, we write the expression for the functional

F(ξ |0〉
k ,ξ

|1〉
k ,ζl) =

∫ τc

τb

dt |A(R)
|0〉 (t)|2 +

∫ τb

τa

dt |A(R)
|1〉 (t)|2

+
∣∣∣∣
∫ τc

τa

dtA
(R)�
|0〉 (t)A(R)

|1〉 (t)

∣∣∣∣
− λ

|0〉
delay

∫ τa

T2

dt |A(R)
|0〉 (t)|2 − λ

|1〉
delay

×
∫ τa

T2

dt |A(R)
|1〉 (t)|2 − λ

|0〉
T |A(R)

|0〉 (τa)|2

− λ
|1〉
T

∣∣A(R)
|1〉 (τa)

∣∣2 − λ
|0〉
�T

×
(∫ τb

τa

dt
∣∣A(R)

|0〉 (t)
∣∣2 − S

)

−λ
|1〉
�T

(∫ τc

τb

dt
∣∣A(R)

|1〉 (t)
∣∣2 − S

)

− λ
|0〉
P

(∑
k

∣∣ξ |0〉
k

∣∣2 − P
)

− λ
|1〉
P

(∑
k

∣∣ξ |1〉
k

∣∣2 − P
)

, (B11)

where the λ are the Lagrange multipliers. The first three terms
in Eq. (B11) are the functions to be minimized, which ensure
that the overlap between the time-binned states in the readout
section is negligibly small. The rest of the terms are constraints,
which additionally guarantee the following conditions to be
simultaneously fulfilled: (i) The cavity responses within the
delay section are maximally suppressed; (ii) the cavity at the
beginning of the readout section is almost empty for both
states; (iii) the integral taken with respect to the time-binned
cavity amplitudes squared within the readout section has the
same value S; (iv) a net power P of the write pulses per
fundamental period 2π/ωf is the same. In our numerical
calculations we used the sequential least-squares programming
minimization method [41] embedded in the internal python
library SCIPY.OPTIMIZE to find the minima of the functional
F(ξ |0〉

k ,ξ
|1〉
k ,ζl).

In the main text we created an arbitrary superposition of
write pulses (each of which separately prepares the logical
state |0〉 or |1〉) by applying the superimposed write pulse

η(W )(t) = αη
(W )
|0〉 (t) + βη

(W )
|1〉 (t), (B12)

aiming to extract the encoded information (given by complex
numbers α and β) from the solution for the cavity amplitude in
the readout section designated in Fig. 5. [Note that the reading
pulse η(R)(t) is always kept the same.] The solution in the
readout section can be written as

A(R)(t ; α,β) = αÃ
(R)
|0〉 (t) + βÃ

(R)
|1〉 (t) + Ã(R)(t), (B13)
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with all three previously established well-known amplitudes
Ã

(R)
|0〉 (t), Ã

(R)
|1〉 (t), and Ã(R)(t) introduced in Eq. (B10). We then

project our resulting solution (B13) onto the functions A
(R)
|0〉 (t)

and A
(R)
|1〉 (t) from Eq. (B10), namely, we write

Oi =
∫ τc

τa

dt A(R)(t ; α,β)A(R)∗
|i〉 (t)

= αFi,0 + βFi,1 + Fi,R, (B14)

where the overlap integrals Fi,q = ∫ τc

τa
dt Ã

(R)
|q〉 (t)A(R)∗

|i〉 (t) with

i,q = 0,1 and Fi,R = ∫ τc

τa
dt Ã(R)(t)A(R)∗

|i〉 (t). Since Fi,q and
Fi,R are known we finally end up with the set of two algebraic
equations

O0 = αF0,0 + βF0,1 + F0,R, (B15)

O1 = αF1,0 + βF1,1 + F1,R, (B16)

from which the retrieved values αR and βR can be evaluated.

APPENDIX C: RETRIEVAL OF ENCODED PARAMETERS
IN THE PRESENCE OF NOISE

Here we study the influence of noise on the quality of our
optimization scheme presented in the main text and introduced
in Appendix B. For that purpose, we subject the previously
established optimal driving amplitudes η

(W )
|0〉 (t), η

(W )
|1〉 (t), and

η(R)(t) (see Appendix B) to a small perturbation represented by
the driving term δηnoise(t) = δηυ(t), where δη is the amplitude
of perturbation and υ(t) stands for a Gaussian white noise
of mean and correlations given by, respectively, 〈υ(t)〉 = 0
and 〈υ(t ′)υ(t)〉 = δ(t − t ′). We then numerically integrate the
Volterra equation (A3) from Appendix A with respect to time
by adding the perturbation δηnoise(t) to the corresponding
deterministic optimal driving amplitudes η(t), which in our
specific case are represented by the known writing and readout
amplitudes η

(W )
|0〉 (t), η

(W )
|1〉 (t), and η(R)(t). We treat the problem

numerically using well-established numerical methods for
integrating stochastic differential equations (see, e.g., [40]).
Concisely, the stochastic contribution to the cavity amplitude is
taken into account after each time step of numerical integration
in the following way: A(tm+1) → A(tm+1) + √

dtδηnoise(tm),
where A(tm+1) after the arrow corresponds to the deterministic
part of the cavity amplitude at t = tm+1 obtained using the
standard Runge-Kutta method and δηnoise(tm) is the stochastic
drive taken from the previous time step. We then accumulate
statistics by integrating many trajectories for different noise

realizations. Next we extract the encoded parameters αR and
βR in the presence of noise replacing the overlap integrals
in Eqs. (B15) and (B16) for the case without noise by
the corresponding overlap integrals evaluated for different
noise realizations. The result of calculations for the average
retrieval values of 〈αR〉 and 〈βR〉 and their absolute errors
εα = |α − 〈αR〉| and εβ = |β − 〈βR〉| with respect to the
encoded values are depicted in Fig. 3.

APPENDIX D: NUMERICAL VALUES FOR THE
OPTIMIZED READOUT PULSE COEFFICIENTS

Here we present numerical values of the coefficients ξ
|0〉
k ,

ξ
|1〉
k , and ζl of the optimal readout pulses η

(W )
|0〉 (t), η

(W )
|1〉 (t),

and η(R)(t) defined by Eqs. (B1) and (B2), which are
presented in the main text. We take the amplitude of the
write pulses such that the net power injected into the cavity
P (W )

|i〉 = 1
Tf

∫ Tf

0 dt |η(W )
|i〉 (t)|2 = κ2, with i = 0,1, such that it

corresponds to the power provided by a coherent driving
signal with the amplitude equal to the cavity decay rate η = κ .
Specifically, using the expansion (B1) for the write pulses
η(W )(t), we obtain the following expression for the power of
the write pulses per fundamental period Tf :

P (W )
|i〉 = η(W )2 1

2

N1∑
k=1

|ξ |i〉
k /η(W )|2 = κ2, (D1)

where η(W ) = κ and 1
2

∑N1
k=1 |ξ |i〉

k /κ|2 = 1 due to the constraint
imposed on the expansion coefficients. On the other hand, the
power of the readout pulse is substantially smaller than that of
the write pulses and for the case without hole burning (see left
column of Fig. 2) we obtain

P (R) = η(R)2 1

2

N2∑
k=1

|ζl/η
(R)|2 = 0.068κ2, (D2)

where η(R) = 0.26κ and again we use as the constraint
1
2

∑N2
l=1 |ζl/η

(R)|2 = 1.
The coefficients for all optimal readout pulses shown in

the left column of Fig. 2 are listed in Table I. For the sake of
convenience, the coefficients of the write and readout pulses
are normalized to η(W ) and η(R), respectively. We use N1 = 5
coefficients for the write pulse and N2 = 10 for the readout
pulse (notation is consistent with that used in Appendices A
and B). The fundamental frequency for the write pulses is
given by ωf = π/(T2 − T1) = �R and for the readout pulse
we use ωf = π/(T3 − T2) = �R/2. Here the Rabi frequency
�R = 2π × 13.62 MHz and the time divisions shown in Fig. 5

TABLE I. Normalized expansion coefficients ξ
|i〉
k=1,...,5 (for i = 0,1) and ζk=1,...,10 defined by Eqs. (B1) and (B2), which correspond to the

optimal readout pulses η
(W )
|0〉 (t), η

(W )
|1〉 (t), and η(R)(t) depicted in the left column of Fig. 2. The coefficients for the write pulses are normalized to

η(W ) = κ and for the readout pulse to η(R) = 0.26κ .

ξ
|0〉
k=1,...,5 ξ

|1〉
k=1,...,5 ζl=1,...,5 ζl=6,...,10

0.434 + 0.103i −0.043 − 0.013i −1.003 − 0.250i 0.229 + 0.054i

0.303 + 0.067i −0.231 − 0.055i 0.820 + 0.195i 0.037 + 0.007i

1.060 + 0.259i −1.127 − 0.273i −0.017 − 0.007i −0.096 − 0.025i

−0.152 − 0.023i 0.200 + 0.044i −0.213 − 0.054i −0.174 − 0.043i

0.682 + 0.161i −0.723 − 0.175i −0.243 − 0.061i 0.105 + 0.024i
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TABLE II. Normalized expansion coefficients ξ
|i〉
k=1,...,4 (for i = 0,1) and ζk=1,...,60 defined by Eqs. (B1) and (B2), which correspond to the

optimal readout pulses η
(W )
|0〉 (t), η

(W )
|1〉 (t), and η(R)(t) depicted in the right column of Fig. 2. The coefficients for the write pulses are normalized

to η(W ) = κ and for the readout pulse to η(R) = 0.11κ .

ξ
|0〉
k=1,...,4 ξ

|1〉
k=1,...,4 ζl=1,...,15 ζl=16,...,30 ζl=31,...,45 ζl=46,...,60

−0.227 + 0.108i 1.252 − 0.161i 0.066 − 0.028i −0.239 − 0.024i 0.054 − 0.032i −0.036 − 0.010i

0.017 + 0.046i 0.074 + 0.050i −0.121 − 0.022i 0.228 − 0.088i −0.041 − 0.014i 0.059 − 0.021i

1.014 − 0.161i −0.243 + 0.083i 0.190 − 0.128i −0.170 − 0.013i 0.044 − 0.029i −0.069 − 0.011i

0.938 − 0.032i 0.574 + 0.040i −0.230 + 0.010i 0.161 − 0.080i −0.027 − 0.014i 0.090 − 0.026i

0.292 − 0.151i −0.109 − 0.019i 0.027 − 0.025i −0.096 − 0.007i

−0.313 + 0.033i 0.107 − 0.059i −0.007 − 0.015i 0.112 − 0.040i

0.365 − 0.155i −0.066 − 0.020i 0.006 − 0.020i −0.112 + 0.016i

−0.363 + 0.028i 0.073 − 0.051i 0.012 − 0.020i 0.122 − 0.051i

0.398 − 0.160i −0.042 − 0.021i −0.009 − 0.017i −0.118 + 0.004i

−0.377 − 0.001i 0.058 − 0.044i 0.021 − 0.022i 0.122 − 0.033i

0.395 − 0.136i −0.032 − 0.021i −0.012 − 0.009i −0.115 + 0.011i

−0.355 − 0.009i 0.025 − 0.040i 0.016 − 0.021i 0.117 − 0.031i

0.358 − 0.097i −0.085 − 0.017i 0.000 − 0.014i −0.108 + 0.001i

−0.305 − 0.001i 0.049 − 0.033i −0.004 − 0.018i 0.107 − 0.032i

0.298 − 0.093i −0.047 − 0.015i 0.026 − 0.023i −0.095 + 0.020i

are T1 = 0, T2 = 36.72 ns, and T3 = 110.15 ns. The readout
section [τa,τc] coincides with the whole readout interval
[T2,T3].

For the case with hole burning, depicted in the right column
of Fig. 2, we use N1 = 4 and N2 = 60. All coefficients are sum-
marized in Table II. Here we choose the fundamental frequency
for the write pulses as ωf = π/(T2 − T1) = �R/2, whereas

ωf = π/(T3 − T2) = �R/30 for the readout pulse. The time
divisions are T1 = 0, T2 = 73.4 ns, and T3 = 1174.9 ns and the
Rabi frequency �R = 2π × 13.62 MHz. The readout section
defined by τa = 1114.3 ns and τc = 1153.6 ns is delayed by
approximately 1 μs with respect to the write section [T1,T2].
The power ratio of the readout pulse to the write pulse turns
out to be P (R)/P (W ) = 0.013.
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Ultralong relaxation times in bistable hybrid
quantum systems
Andreas Angerer,1,2* Stefan Putz,1,2,3* Dmitry O. Krimer,4 Thomas Astner,1 Matthias Zens,4

Ralph Glattauer,1 Kirill Streltsov,1 William J. Munro,5,6 Kae Nemoto,6 Stefan Rotter,4

Jörg Schmiedmayer,1 Johannes Majer1,7†

Nonlinear systems, whose outputs are not directly proportional to their inputs, are well known to exhibit many
interesting and important phenomena that have profoundly changed our technological landscape over the last
50 years. Recently, the ability to engineer quantummetamaterials through hybridization has allowed us to explore
these nonlinear effects in systems with no natural analog. We investigate amplitude bistability, which is one of the
most fundamental nonlinear phenomena, in a hybrid system composed of a superconducting resonator inductively
coupled to an ensemble of nitrogen-vacancy centers. One of the exciting properties of this spin system is its long
spin lifetime, which is many orders of magnitude longer than other relevant time scales of the hybrid system. This
allows us to dynamically explore this nonlinear regime of cavity quantum electrodynamics and demonstrate a crit-
ical slowing down of the cavity population on the order of several tens of thousands of seconds—a time scale much
longer than observed so far for this effect. Our results provide a foundation for future quantum technologies based
on nonlinear phenomena.
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INTRODUCTION
In nature, most physical systems are inherently nonlinear, giving rise to
effects, such as bistability (1), chaos (2), solitons (3), and superradiance
(4), and often appear counterintuitive when contrasted withmuch sim-
pler linear systems. Amplitude bistability, one of the basic nonlinear
phenomena [commonly used in optical switches nowadays (5)], has
been extensively investigated both theoretically (6–10) and experimen-
tally (11, 12). It occurs in anymediumwhere strong nonlinearities in the
interaction between a radiation field and a polarizable medium, such as
spins, exist. The nonlinearity in these systems arises from the two-level
nature of the atoms coupled to the cavitymode but only shows upwhen
driven beyond the single excitation regime. For a strong coupling be-
tween the spin systemand the cavitymode, a first-order phase transition
between a saturated, disordered, and de-excited, ordered ground state
occurs (13). The coupled system switches between these two branches
and shows a hysteresis depending on the history of the system.

The usual cavity quantum electrodynamics (cQED) demonstrations
use atoms or trapped ions coupled to optical light fields to investigate
these nonlinear effects, but the short atomic lifetimes have made it dif-
ficult to truly observe the temporal dynamics of amplitude bistability
(14, 15) and restricted previous studies to the steady-state behavior.
In contrast, quantum engineering by hybridizing different physical
systems and by exploiting their advantages (16–21) allows us to create
systems with extremely long-lived emitters, making it possible to ob-
serve the bistable system during evolution. Here, we report on the ob-
servation of amplitude bistability in a cQED system composed of a
superconducting resonator coupled to a long-lived electron spin ensem-
ble formed from artificial atoms [negatively charged nitrogen-vacancy
(NV−) centers in diamond (22, 23)]. This type of system has been stud-
ied extensively (17, 18), but experiments to date have been mainly
carried out in the linear regime. The present work goes beyond this
linear regime and thus provides the foundation for further understand-
ing of nonlinear physics in this type of solid-state hybrid quantum sys-
tem. Moreover, the long lifetime of the spin system (24) allows us to
study the temporal behavior of the presented effect, a regime experi-
mentally just recently accessed (25, 26).
RESULTS
Equations of motion from the Tavis-Cummings Hamiltonian
An ensemble of spins in a cavity is characterized by the three quantities:
polarization, inversion, and the cavity amplitude. Their dynamics can
bederived fromthedrivenTavis-CummingsHamiltonian (27) forN spins
under the rotating wave approximation as

H ¼ ℏwca
†aþ ℏ

2
∑N

j¼1wjs
z
j þ iℏ∑N

j¼1gjðs�j a†�sþj aÞ þ

iℏðha†e�iwpt � h:c:Þ ð1Þ

with a† and a being the creation and annihilation operators for the cav-
ity mode of frequency wc, respectively, and sj

z, sj
+, and sj

− as the spin
inversion, raising, and lowering operators, respectively, for the j-th spin of
frequency wj coupled to the cavity with a single-spin coupling strength
gj. The last term accounts for an external cavity drive with field ampli-
tude h and frequency wp.

Using a mean-field approximation, valid in the limit of large spin
ensembles, 〈a†s−〉 ≈ a†s− (in the following, unbolded symbols will be
used for the expectation values), we derive a set of first-order differential
1 of 6
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equations, formally equivalent to the well-known Maxwell-Bloch
equations (28) as

a: ¼ �kaþ∑jgjs
�
j þ h

s�j
: ¼ �ðg⊥ þ iQjÞs�j þ gjszj a
szj
: ¼ �g∥ð1þ szj Þ � 2gjðs�j a† þ sþj aÞ

ð2Þ

with cavity dissipation rate k, transversal spin relaxation rate g⊥ =
1/T2, and longitudinal spin relaxation rate g∥ = 1/T1. The relaxation
rates are ordered as k > g⊥ ≫ g∥ such that the longitudinal decay
of the spin inversion is by far the slowest process.Qj are the frequency
detunings with respect to the ensemble central frequency to account
for inhomogeneous broadening. Setting the time derivatives to zero, the
steady state of this system can be written as

aj j2 ¼ h2

k2
1�∑jCjs

z
j

� ��2
; szj ¼ � 1þ 4g2j aj j2g⊥

g∥ðg2⊥ þ Q2
j Þ

 !�1

ð3Þ

where the dimensionless parameter Cj = gj
2/[k g⊥(1 + Qj

2/g⊥
2)] is the

single-spin cooperativity. The collective system cooperativity is given
accordingly by Ccoll = ∑j Cj.

We can classify the expected system phase transition by deriving a
solution for the time-dependent cavity amplitude |a(t)|2. The difference
in dissipation rates allows us to adiabatically eliminate the a and sj−

variables (29), which results in a first-order differential equation for
the intracavity intensity. For the giant Sz = ∑j sj

z spin in resonance
(Qj = 0) with the cavity mode, it can be written as

d aj j2
dt

¼ � 8Ccollk2 aj j5
h

þ 8Ccollk aj j4 � 2kg∥
h

ð1þ CcollÞjaj3 þ 2g∥jaj2
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ð4Þ

For our typical system parameters and a strong enough coupling,
this equation predicts a first-order phase transition that connects a
strongly driven branch and a weakly driven branch, with hysteresis
and two saddle-node bifurcations (30) at which the transition between
both branches occurs.

In contrast to amplitude bistability using a small number of emitters
(25, 26), in our case, the sizeable number of spins allows us to neglect
quantum fluctuations, which means that a blinking between the two
stable solutions does not occur on an experimentally accessible time
scale.

The hybrid quantum system
The hybrid system is shown in Fig. 1 and is composed of an electron
spin ensemble formed by NV centers in diamond, loaded onto a super-
conducting l/2 resonator. To thermally polarize the N ≈ 1012 electron
spins to their ground state (≥99%), we put the system in a dilution re-
frigerator at 25mK.Each electron spinhas a zero-field splitting ofD/2p≈
2.878 GHz and an average coupling rate of g0/2p ≈ 12 Hz to the cavity
mode. We estimate the transversal relaxation rate as g⊥/2p ≤ 33 kHz
and the longitudinal relaxation rate as g∥/2p ≤ 3.6 mHz (see Materials
andMethods) (18, 24). The superconducting resonator has a cavity line-
width of k/2p = (440 ± 10) kHz (half width at half maximum) with a
fundamental resonance frequency at wc/2p = 2.691 GHz and a loaded
Angerer et al., Sci. Adv. 2017;3 : e1701626 8 December 2017
quality factor ofQ = 3300. An external microwave field with frequency
wp is used to probe the hybrid system.

Steady-state amplitude bistability
First, we search for the bistable behavior in the steady state bymeasuring
the transmitted intensities through the cavity, defined by |T|2 = Pout/Pin
as a function of the input drive intensity Pin≈ h2/k and outgoing intensity
Pout≈ |a|2k. The drive power is raised in a stepwisemanner, which is slow
enough to allow the system to reach a steady state for each stimulus Pin. For
small excitations, the intracavity intensity is not sufficient to saturate the
spin ensemble (sj

z ≈ −1) and is thus given by |a|2 = h2/[k(1 + Ccoll)
2].

As the power level increases, the cavity field bleaches the spins (sj
z ≈

sj
−≈ 0) such that the Rabi splitting vanishes and the spin systemdecou-

ples from the cavity (Fig. 2). The intracavity intensity |a|2 = h2/k2 is that
of an empty cavity from which spins are completely decoupled.

This nonlinear saturation behavior is a necessary precursor to the ob-
servation of amplitude bistability. However, whether this is observable in
the experiment is determined by the system’s collective cooperativity.
This is apparent from Eq. 3, where larger cooperativity values result
in stronger nonlinearity and thus a larger phase separation.

In contrast to a homogeneously broadened spin ensemble where
analytic expressions for the critical cooperativity to observe bistability
exist (Ccoll ≥ 8) (10), the inhomogeneous broadening requires numer-
ical solutions to determine the bistability threshold (see Materials and
Methods). The finite width of the spin distribution markedly increases
the required collective cooperativity for which bistability can be ob-
served (31). In the present case of an inhomogenously broadened line
with G/2p = 9.5 MHz (full width at half maximum), we predict a critical
cooperativity ofCcoll = 42.4. For lower values of the collective cooperativity,
the intracavity intensity as a function of the input drive is a continuous
function, whereas at the critical cooperativity, the system response
+ + + + + ... 

Ground

Excited
mJ = +N/2

g g g g g

e e e e e

Pin Pout

Vacuum

Giant spin J =N/2

(n + 5)

(n + 1)

(n + 2)

(n + 3)

(n + 4)

A

B

1 mm

|mJ = −N/2

Fig. 1. Hybrid quantum system. (A) Experimental setup. Schematic illustration
of our experimental setup in which an ensemble of spins (described as an effec-
tive giant spin) is inductively coupled (with a coupling rate W) to the cavity mode.
The nonlinearity stems from the anharmonicity of this coupled spin when driven
beyond its linear regime, which we probe through the transmission |T|2 = Pout/Pin
of the hybrid system. (B) Photograph of the system consisting of a superconduct-
ing transmission line cavity with an enhanced neutron-irradiated diamond on top
of it, containing a large ensemble of NV spins (black). Two coupling capacitors
provide the necessary boundary conditions for the microwave radiation.
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becomes a step function and, at two critical drive values Pucrit and P
d
crit (see

Fig. 3, B andC), the system switches between these two branches under-
going a first-order phase transition.

In Fig. 3, we show steady-state bistability measurements for three
cooperativity values Ccoll = 18, 49, and 78. The lowest value Ccoll = 18
does not show bistability (Fig. 3A), but increasing the cooperativity to
Ccoll = 49 (seeMaterials andMethods) allows us to observe the first signs
of bistable behavior (Fig. 3B). This value is close to the expected value
for the critical cooperativity of Ccoll = 42.2 for our system parameters.
Increasing the cooperativity further to Ccoll≈ 78, we observe amplitude
bistability (Fig. 3C) within a 2-dB range. This steady-state bistability be-
havior is well reproduced by a full numerical simulation, with in-
homogeneous broadening taken into account (dashed lines in Fig. 3,
A to C).

Quench dynamic measurements
Given this evidence of amplitude bistability, we focus next on the tem-
poral behavior of the hybrid system using quench dynamic measure-
Angerer et al., Sci. Adv. 2017;3 : e1701626 8 December 2017
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ments. We start by preparing the spin ensemble in one of the two
extremal states, either polarized in the ground state or completely
saturated and decoupled from the cavity. These initial states are
prepared by setting the cavity input power to Pin = 0 or Pin ≫ Pdcrit
for several minutes, respectively. The drive power is then nonadiabati-
cally switched to a different drive level, and the system transmission is
monitored. We repeat this measurement several times, always prepar-
ing the system in the same initial state but switching to different target
drive powers. When the system is driven close to the bifurcation point
(Pin≈ Pdcrit), the time scales needed to settle in a stationary state become
as long as 4 × 104 s, as depicted in Fig. 4.

The behavior can be linked to our model given in Eq. 4, which pre-
dicts that our system features two critical drive values Pucrit and Pdcrit at
which a saddle-node bifurcation occurs (30). For input powers between
Pucrit and Pdcrit, two attractors coexist, and the system evolves to one of
these attractors, depending onwhether they are approached frombelow
or above the bistable region. These two attractors, one with polarized
and ordered spins and the other one with unordered and saturated
spins, are connected by a first-order phase transition if the system co-
operativity is large enough (see Fig. 3C).When driven far away from the
critical drive values either in the strongly or in theweakly driven branch,
the system approaches a steady state on a characteristic time scale
determined by the slowest decay rate in the system—given by the lon-
gitudinal decay g∥ for our implementation. The system settles in a sta-
tionary state at which the external drive and dissipation are equal and
opposite in effect. Close to the critical points Pdcrit and Pucrit, the system
becomes scale-invariant and is characterized by an infinite correlation
time (32)—an effect referred to as “critical slowing down” (15, 33). In the
presented experiment, we deal with a saddle-node bifurcation, where the
dynamics exhibits power law divergence close to the critical drive value.

This behavior is shown in Fig. 4 (A to C) where, close to the critical
drive, the system evolves toward the upper unstable fixed point, with a
time derivative that can approach zero arbitrarily closely (inset in Fig.
4B). Small deviations from the critical drive lead to a speed up in the
evolution until the system relaxes to a real steady state. The time it takes
to go from the upper to the lower branch diverges close to the critical drive
according to tswitch≈ |Pin − Pdcrit|

−a, as shown in Fig. 4C, with a ≈ 1.20 ±
0.04. For the simplest case of a saddle-node bifurcation after a cubic
 8, 2017
(1 + Ccoll)
–2

A B C

T
/T

m
ax

2
(d

B
)

Fig. 3. Steady-statebistability.Wemeasure the steady-state bistability transmission through the cavity as a functionof increasing (blue) anddecreasing (red) input power Pin. In
(A), the transmission measurements are plotted for the cooperativity value Ccoll ≈ 18 and k/2p = 1.2 MHz using two subensembles in resonance with the cavity. (B) Same
transmission measurement with Ccoll ≈ 49 and k/2p = 0.44 MHz. A small bistability area is visible where the system evolves to different steady states depending on the history
of the system in either upper or lower branch. (C) Samemeasurement as in (A), with an increased cooperativity of Ccoll ≈ 78 (by using all four NV subensembles in resonance with
the cavity), again with k/2p = 0.44 MHz. The dashed curves are numerical solutions of Eq. 3. The dashed lines in (B) show the asymptotic solutions in the limit of large and small
drive amplitudes h. Two critical values of the input power, at which a phase transition between two stable branches occurs, are characterized by a saddle-node bifurcation and
labeled as Pucrit and P

d
crit. For all three cases, a sketch of the corresponding potential is also depicted, which shows the occurrence of either one or two stable solutions (red and blue

solid circles) and one unstable solution (B and C) (green solid circles) for a fixed value of the input power. Tunneling through the potential barrier does not occur in our case
because of the large system size such that the system does not switch back and forth between the steady states in the bistable area.
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Fig. 2. Rabi splitting under different drive powers. Evolution of the transmission
spectrum for different input drive powers Pin. In the linear regime, the Rabi splitting is
observable. For a drive power Pin ≈ Pref, the spin system starts to bleach and decouples
from the cavity. For input drives Pin ≫ Pref, we observe the bare cavity transmission
function. This behavior can be seen from the projection of the observed maximum
transmission peaks on the xyplane.Whendriving the system resonantly (greendashed
line) and with a large enough cooperativity, operating between these two regimes
exhibits amplitude bistability.
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function, the phase transition shows an algebraic divergence with a
critical exponent a = 1. The more complicated set of equations in the
present case changes this critical exponent to the larger value a≈ 1.20 ±
0.04. The exact value depends on the precise structure of the so-called
normal form (34), as given by Eq. 4 for the homogeneously broadened
case. Comparing these experimental results with the full numerical
solutions of Eq. 2, including inhomogeneous broadening, we observe
excellent agreement (see Fig. 4A). For the quench from low-power
levels to the high-power levels, we observe a similar behavior with the
same critical exponent.
 on D
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ber 8, 2017
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DISCUSSION
In summary, we have shownhow a hybrid system composed of a super-
conducting resonator coupled to an electron spin ensemble in diamond
can be used to explore amplitude bistability in new regimes of cQED,
with unusual decay rates where the spin lifetime is much longer than
other decay constants in the system. This regime allows us to study the
temporal evolution of the phase transition explicitly, something exper-
imentally difficult to achieve using the standard cQED implementa-
tions. We observe a critical slowing down of the cavity population on
the order of 11 hours, a time scale several orders of magnitude longer
than observed so far for this effect andmany orders ofmagnitude longer
than other time scales associated with the system. Our experiment pro-
vides a foundation for the exploration of additional nonlinear phenome-
na in quantummetamaterials and future quantum technologies thatmay
arise from it. One of the possible applications is microwave isolators and
diodes thatmake use of the fact that the transmission intensity is different
depending on the history of the system. For a large enough value of the
collective cooperativity, our system provides an isolation of more than
four orders of magnitude for a given input power in the bistable regime.
By reducing the number of emitters, the nonlinearity in the system pro-
vides a way to create nonclassical states, such as spin-squeezed states,
which are impossible to realize in a purely linear system. This paves
the way toward possible applications in high-sensitivity magnetic field
sensing and quantum metrology.
Angerer et al., Sci. Adv. 2017;3 : e1701626 8 December 2017
MATERIALS AND METHODS
Sample
The spin systemwas realized by enhancing a type Ib high-pressure high-
temperature diamond crystal containing an initial concentration of 200
parts per million (ppm) of nitrogen, with a natural abundance of 13C nu-
clear isotopes.We achievedNV− centerswith a total density of≈6 ppmby
50 hours of neutron irradiation with a fluence of 5 × 1017 cm−2 and by
annealing the crystal for 3 hours at 900°C. Excess nitrogenP1 centers
(S = 1/2), uncharged NV0 centers, and additional lattice stress are the
main source of inhomogeneous broadening, which exceeds decoherence
because of thenaturally abundant 1.1%13C spinbath.The characteristics of
the diamond crystal andNV ensemblewere initially determined at room
temperature using an optical confocal microscope.

Spin system
The NV− center is a paramagnetic point-defect center in the diamond
with an electron spin S = 1, consisting of a nitrogen atom replacing a
carbon atom in the diamond lattice and an adjacent vacancy. The
ground spin triplet can be described by a simplified Hamiltonian H =
ħDSz

2 + ħmBzSz, with m = 28 MHz/mT and a large zero-field splitting of
D/2p =2.877GHz. The splitting corresponds to a temperature ofD/hkb=
138mK, which allows to thermally polarize the spins in the ground state
at the fridge base temperature of 25mKwith up to 99% fidelity. Because
of its crystallographic diamond structure, four different NV subensem-
bles, with equal abundance (pointing in the [1, 1, 1] direction), exist. By
applyingB≈ 30mTwith either 0° or 45° relative to the [1, 0, 0] direction
in the NV resonator plane, we could Zeeman-tune four or twoNV sub-
ensembles into resonance with the cavity mode.

Superconducting resonator
Themicrowave cavity was loaded by placing the diamond sample on top
of a l/2 transmission line resonator. The superconducting microwave
cavity was fabricated by optical lithography and reactive ion etching
of a 200-nm-thick niobium film sputtered on a 330-nm-thick sapphire
substrate. The loaded chip was hosted and bonded to a printed circuit
board enclosed in a copper sarcophagus and connected to microwave
A B C

Fig. 4. Quench dynamics measurement. Quench dynamics of the high cooperativity Ccoll ≈ 78 configuration and an initial state far in the strong driving branch. In (A), the
intracavity intensity |T|2/|Tmax|

2 is plotted over time for different drive intensitieswhere the time to reach a steady state strongly depends on the input intensity. For drive intensities
larger than a critical drive value Pdcrit (defined as the power where the system undergoes the phase transition from the upper to the lower branch, see Fig. 3), the spin system
remains saturated and sets into a state on the upper branch,whereas in theopposite case, the systemevolves into a steady state on the lower branch. Close to the critical drive Pdcrit,
this time scale is extremely prolongedandapproaches 4×104 s. Thedashed lines correspond topredictions fromourmodel. In (B), we show thephasediagramasd|T|2/dtover |T|2

for the evolution toward a steady state (black dotted line) for different input drives Pin. For drive powers close to the critical drive, the derivative approaches zero, and thedynamics
becomes much slower compared to drive powers larger and smaller than the critical drive. In (C), the switching times between the upper and lower branch for different input
drives are shown. We define the switching time tswitch as the inverse of the smallest gradient for a given curve [green circle in (A) and (B)]. Close to the critical drive, the switching
time diverges, and the time to reach a steady state becomes arbitrarily long. The solid red line is a fitting function of the form tswitch ≈ |Pin − Pdcrit|

−a (with a = 1.20 ± 0.04).
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transmission lines. The cavity exhibited a linewidth of k/2p = 440 kHz,
which we could increase to k/2p = 1.2MHz by applying weakmagnetic
fields perpendicular to the resonator plane that partially quenched the
superconducting material. The cavity was coupled to the environment
such that the internal losses of the cavity were much smaller than the
coupling losses (kint ≪ kext). This allowed us to approximate the total
losses as k ≈ kext.

Transmission measurements
Transmission measurements were performed by recording the for-
ward scattering parameter |S21|

2 of the hybrid system using a standard
vector network analyzer (Agilent E5071C). To perform steady-state
bistability measurements, we probed the system first with increasing
power levels. For each power level, wemonitored the transition until a
steady state was reached. We increased the drive power until the
steady state lay far in the high driving branch, after which the power
was lowered again in a stepwisemanner.We identified bistability if the
system showed different steady states when drivenwith increasing and
decreasing power. From Eq. 3, we immediately found that the asymp-
totic behavior of the transmission intensity |T|2 = |a|2k2/h2 is de-
scribed by |Tlow|

2 = (1 + Ccoll)
−2 in the single excitation regime and

by |Thigh|
2 = 1 in the large excitation regime. The difference in the

transmission between these two regimes is therefore only determined
by the collective cooperativity Ccoll = ∑j gj

2/[k g⊥(1 + Qj
2/g⊥

2)].

Quench dynamic measurements
Quench dynamics measurements were used to measure the temporal
behavior of the observed effect. For this, we initialized the system in
an initial state far in the large driving regime with a strong drive for
several minutes. After this state preparation where the spin system
was completely decoupled from the cavity, the drive power was nona-
diabatically switched to a lower drive, with transmission monitored for
different target drive levels. We monitored the transmission until the
time derivative of the transmission amplitude became smaller than an
arbitrarily chosen threshold, which we then identified as our steady
state.

Transversal decay rate
We used Car-Purcell-Meiboom-Gill–like sequences to get an estimate
for the spin-spin relaxation time (T2 = 1/g⊥). The best achievable echo
times in our experiment were T2 = (4.8 ± 1.6) ms, which we identified as
a lower bound for our relaxation times. The real spin-spin relaxation
times were potentially longer, but misalignment of the external dc
magnetic field with respect to theNV− axis and a bath of excess electron
and nuclear spins in the host material limited the echo time to times
shorter than the real relaxation times.

Longitudinal decay rate
To get a value for g∥, we used the dispersive shift of the cavity mode
coupled to a detuned spin system. To enter the dispersive regime, we
detuned the spin system such that the detuning was much larger than
the collective coupling strengthW. The spin system acted as a refractive
medium that shifted the resonance frequency if the spin systemwas po-
larized in the ground state. By applying a strong microwave tone, we
excited a fraction of the NV− ensemble, which led to a shift of the res-
onator frequency.Wemonitored this frequency shift over time, while the
spin system relaxed back into its thermal equilibrium state with the
characteristic rate g∥. This gave a lower bound for the longitudinal relaxa-
tion time of T1 = 44 s (18), justifying the adiabatic elimination technique.
Angerer et al., Sci. Adv. 2017;3 : e1701626 8 December 2017
The real longitudinal relaxation timeswere potentially longer, but spin
diffusion processes by spin-spin interaction between neighboring
NV− center spins and additional electron spins limited the measured
relaxation times to times shorter than the intrinsic longitudinal re-
laxation times.

Theoretical modeling
To calculate the quench dynamics displayed in Fig. 4, we numerically
solved theMaxwell-Bloch equations (Eq. 2) for the driving signals chosen
nearby the first-order transition (see the main text for details) using the
standardRunge-Kuttamethod.As an initial condition,we took the steady
state given by Eq. 3, which lay on the upper branch depicted in Fig. 3C
and corresponded to the limit of strong driving with |sj

z|, |sj
−| ≪ 1. To

accurately describe the dynamics and to achieve a good correspon-
dence with experimental data, we took into account the effect of an
inhomogeneous broadening by modeling the spin density with a q-
Gaussian shape for the spin density, r(w) = z [1 − (1 − q) (w − ws)

2/
D2]1/(1 − q), distributed around themean frequencyws/2p =2.6915GHz,
with the parameter q = 1.39, the width D/2p = 5.3 MHz, and a normal-
ization constant z. Such a shape for r(w) was previously established
by obtaining an excellent agreement between our theoretical model
and the experiment, when treating the problem in the framework of
the Volterra equation valid in the limit of weak driving signals (35). We
then straightforwardly discretized our problem by performing the
transformation gj = W[r(wj)/∑l r(wl)]

1/2, where W2 = ∑j g
2
j stands for

the collective coupling strength [W/2p = 9.6MHz (Fig. 3, A and B) and
12.6 MHz (Fig. 3C)]. Because, in total, we dealt with a sizable number of
spins (N≈ 1012), we made our problem numerically tractable by dividing
spins into many subgroups with approximately the same coupling
strengths so that the numerical values for gj in Eq. 2 represent a coupling
strengthwithin each subgroup rather than an individual coupling strength.

Critical cooperativity
From Eq. 3, it was straightforward to derive a condition for the thresh-
old of bistability, which was accompanied by a negative slope of the
driving strength h as a function of the transmission amplitude |a|. It
is given by the following inequality

dh
d aj j ¼ kþ∑

k

g2kg∥g⊥
g∥ðg2⊥ þ Q2

kÞ þ 4g2k aj j2g⊥
þ

∑
k

g2kg∥g⊥⋅8g
2
kg⊥ aj j2

ðg∥ðg2⊥ þ Q2
kÞ þ 4g2k aj j2g⊥Þ2

≤0

For the simple case of a homogeneous spin ensemble, this condition
could be solved analytically, giving the well-known threshold for bi-
stability of Ccoll > 8. In the case of inhomogeneous broadening, the re-
quired collective cooperativity to observe bistability increasedmarkedly
as compared to the homogeneous case (31). Numerical simulations
show that, for the q-Gaussian spin distribution used in our manuscript,
the effect of bistability can be observed for Ccoll > 42.2, which
corresponds to a collective coupling ofW/2p = 8.86MHz. The threshold
for bistability depends not only on the width of the distribution but
also on its specific shape. Changing from a q-Gaussian to a Gaussian or
a Lorentzian spin distribution changes the threshold to Ccoll > 40.8 or
Ccoll > 45.2, respectively (by changing only the coupling strength while
keeping all other parameters constant).
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Adiabatic elimination
Using the fact that g∥≪ k, g⊥, andW, the dynamics at large times (when
t≫ 1/k, 1/g⊥, and 2p/W) could be considerably simplified because the
cavity amplitude a and the spin lowering expectation values sj

− adiabat-
ically follow the evolution of the z component of the spin operator
expectation value sj

z. By introducing the small parameter D = g∥/g⊥
and the slowdimensionless time t= g∥t, we finally derived a first-order
differential Eq. 4 for the intracavity intensity |a|2.
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Route from spontaneous decay to complex multimode dynamics in cavity QED
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We study the non-Markovian quantum dynamics of an emitter inside an open multimode cavity, focusing on
the case where the emitter is resonant with high-frequency cavity modes. Based on a Green’s-function technique
suited for open photonic structures, we study the crossovers between three distinct regimes as the coupling
strength is gradually increased: (i) overdamped decay with a time scale given by the Purcell modified decay rate,
(ii) underdamped oscillations with a time scale given by the effective vacuum Rabi frequency, and (iii) pulsed
revivals. The final multimode strong-coupling regime (iii) gives rise to quantum revivals of the atomic inversion
on a time scale associated with the cavity round-trip time. We show that the crucial parameter to capture the
crossovers between these regimes is the nonlinear Lamb shift, accounted for exactly in our formalism.

DOI: 10.1103/PhysRevA.89.033820 PACS number(s): 42.50.Pq, 42.50.Ar, 42.50.Ct

I. INTRODUCTION

Controlling the emission properties of quantum systems is
at the heart of a number of fields ranging from quantum infor-
mation processing to single-molecule spectroscopy. In solid-
state cavity QED a substantial amount of experimental effort
aims at designing highly structured photonic environments in
the vicinity of the emitter to achieve a high level of control
over its quantum dynamics [1–4]. Much of the earlier work
focuses on the resonant coupling to a single confined mode of
the photonic structure that has favorable emission properties,
while coupling to the rest of the modes of the photonic environ-
ment is regarded as a parasitic influence and is either discarded
or bulked into a total background spontaneous emission rate
in the spirit of Ref. [5]. Recent trends in experimental work,
however, point towards spatially highly complex and open
photonic structures, where the delineation between a cavity and
the radiative environment becomes highly blurred (see, e.g.,
[6–8]). Such situations are more effectively described through
the local density of photonic states (LDOPS) [9–15]. This
more powerful and potent theoretical approach has meanwhile
fueled a great deal of research on light-matter interaction in
fields ranging from cavity QED to photovoltaics [16], giving
rise to what may be referred to as LDOPS engineering.

While recent theoretical works have recognized the poten-
tial of this method [11–13,17], including those dealing with
dispersing and absorbing media [9,18], the lack of a suitable
method that allows tackling the often complex non-Markovian
dynamics of a two-level-like emitter in a leaky photonic struc-
ture was a significant hurdle in revealing novel phenomena
that may be at play in a host of modern-day light-confining
structures such as periodic [2], deterministic aperiodic [19],
and disordered photonic media [6], as well as nanoplasmonic
systems [20]. Here we present a formalism for computing
the full quantum dynamics of emitters in arbitrarily complex
photonic structures based on a single Volterra equation with
a spectral function proportional to the LDOPS. We then
illustrate the possibility of calculating the LDOPS of open
and complex photonic structures employing the non-Hermitian
set of constant-flux (CF) states that have been introduced

in Ref. [21] to describe steady-state lasing characteristics of
lasers. Based on this powerful tool, we explore the dynamics
of a quantum emitter in the multimode regime, i.e., when the
emitter couples to several modes of the cavity. This regime
is notoriously difficult because it leads to highly complex
non-Markovian dynamics, but it best illustrates the potency
of the method outlined here to provide insight into the various
possible time scales of the emitter dynamics. In particular,
we discuss a series of crossovers between three dynamical
regimes as the coupling strength of the emitter is increased.
Some of the aspects of these regimes have been discussed
before in the literature within the limited scope of a variety
of methods [9,22–27]. The beauty of our approach that we
present here is that it provides a unified description, a thorough
understanding, and a classification for all of these regimes,
with a key parameter being the nonlinear Lamb shift.

II. THEORETICAL MODEL

The system we study is a typical cavity QED setup consist-
ing of a two-level system (TLS) with transition frequency ωa

placed inside a cavity. The method we present here is valid for
an arbitrarily complex open cavity geometry, but for the sake
of transparency we discuss here a Fabry-Pérot cavity formed
by two highly reflecting mirrors (see Fig. 1). To describe the
excitation dynamics of the TLS we start with the familiar
Hamiltonian written in terms of the modes-of-the-universe
approach [28], which makes no distinction between the cavity
and its environment, H = (�ωa/2)σz + ∫

dω�ωa†(ω)a(ω) +
�
√

γ /π
∫

dω[g(ω,r)a(ω)σ+ + g�(ω,r)a†(ω)σ−]. Here a†(ω)
and a(ω) are standard creation and annihilation operators of
a photon and σ+,σ−,σz are the Pauli operators associated
with the TLS. The interaction part of H is written in the
electric dipole and rotating-wave approximation, where g(ω,r)
are the coupling amplitudes, and γ stands for the coupling
strength proportional to the dipole moment squared. Due to the
rotating-wave approximation, nonresonant terms (proportional
to aλσ

− and a
†
λσ

+) are absent in this Hamiltonian such that
the number of excitations is conserved. We can thus make the
following ansatz for the time evolution of the system: |�(t)〉 =

1050-2947/2014/89(3)/033820(8) 033820-1 ©2014 American Physical Society
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ωa

FIG. 1. (Color online) Two-level system with transition fre-
quency ωa inside an open cavity.

c(t)e−iωat/2|u〉|0〉 + ∫
dω cω(t)|l〉|1ω〉e−i(ω−ωa/2)t , where the

ket vectors |u〉 and |l〉 stand for the atom in the upper and
lower states, respectively, and the ket vectors |0〉 and |1ω〉
represent the vacuum state and a single photon with the
frequency ω. Solving the Schrödinger equation with this ansatz
H|�(t)〉 = i�∂t |�(t)〉, we arrive at the Volterra equation for
the excited-state amplitude of the TLS c(t),

ċ(t) = −γ

π

∫ t

0
dt ′

∫ ∞

0
dω F (ω)e−i(ω−ωa )(t−t ′)c(t ′), (1)

where F (ω) = ρ(ra,ω)|g(ω)|2 is the spectral function, featur-
ing the LDOPS ρ(ra,ω), evaluated at the emitter position r =
ra , and g(ω) is the frequency-dependent coupling amplitude.

Note that Volterra equations as above have already been
used (i) for describing a single discrete energy level coupled
to a featureless continuum of states [29] as well as (ii) for the
case of a TLS coupled to dispersing dielectrics [9,30]. In the
former case (i) a very intuitive graphical analysis was presented
including, however, a spurious integral extension towards
negative frequencies. In the second case (ii) the solutions were
calculated explicitly without, in turn, the insight provided by
the modes of the corresponding open cavity geometry. In the
following we introduce a method that is general enough to
overcome the limitations of both approaches.

To make contact with the physics of an open cavity, we
first evaluate the LDOPS for a one-dimensional cavity of
length L bounded at x = 0,L by two thin semitransparent
mirrors modeled by dielectric slabs of width d � L with
refractivity index n (see Fig. 1). In what follows we use
units where the speed of light c = 1. We also normalize
x to L and measure time t in units of half the cavity
round-trip time and frequency ω in units of it’s inverse. In

the limit of n → ∞ and d → 0 the mirror’s transparency is
characterized by a factor η = n2d, which is related to the
frequency-dependent mirror reflection amplitude as r(ω) =
iωη/(2 − iωη) [31]. For such an open system the LDOPS is
given exactly by the imaginary part of the Green’s function
[32] ρ(xa,ω) = −2ω Im G+(xa,xa,ω)/π , where the retarded
Green’s function (labeled by +) satisfies the Helmholtz
equation (∂2

x + n2ω2)G+(x,xa,ω) = −δ(x − xa) for all x ∈
R. Note that, due to the openness of the cavity, the LDOPS
is a continuous function, corresponding to a continuum of
extended modes that are notably different from the discrete
set of cavity modes. An exact discrete spectral representation
for the Green’s function can, however, be obtained for the
finite but open cavity geometry at the expense of introducing a
non-Hermitian set of modes referred to as CF states, recently
introduced to laser physics [21,33]. To compute the response
to a monochromatic source at frequency ω, CF states φm(x)
have to be determined that satisfy [∂2

x + n2ωm(ω)2]φm(x) = 0
with the outgoing boundary conditions ∂xφm(x) = ±iωφm(x)
at the right (with +) and left cavity boundary (with −).
These states can be understood to carry a constant flux to
infinity [21]. The resulting non-Hermitian eigenvalue problem
features complex eigenvalues ωm and a complete set of right
(φm) and left (φ̄m) eigenvectors that parametrically depend
on ω and are biorthogonal to each other,

∫ L

0 dx n2φ̄∗
mφn =

δmn. The spectral representation of the Green’s func-
tion can then be constructed through G+(x,x ′,ω) =
−∑

m φm(x,ω)φ̄∗
m(x ′,ω)/[ω2 − ω2

m(ω)], resulting in a LDOPS
in the middle of the cavity that consists of a series of peaks,
one for each m. In this picture it becomes intuitively clear
that the peaks in the LDOPS, which the TLS couples to, arise
when (i) the frequency ω is close to one of the CF frequen-
cies ωm (see the denominator in the Green’s function) and
(ii) the CF eigenfunction φm has a sizable value at the position
xa of the TLS (see the numerator). The function g(ω) that
determines the coupling strength to the emitter is given by
|g(ω)|2 = (π/2)ωe−(ω−ωa )2/(2ω2

c ), where we have introduced
a Gaussian cutoff at ωc. In our simulations we varied the
cutoff frequency ωc in a relatively large frequency interval
observing qualitatively similar behavior. In what follows we
present results for ωc = 2ωa . Putting all terms together, the
spectral function in our example is given by

F (ω) = 2n2ωe−(ω−ωa )2

(n2 + 1)2 − (n2 − 1)2 cos(2ωnd) + 2(n4 − 1) cos(ωL) sin2(ωnd) + 2n(n2 − 1) sin(ωL) sin(2ωnd)
. (2)

III. DYNAMICAL SCENARIOS

We now proceed to solve Eq. (1) for a single excitation,
initially stored in the TLS c(0) = 1. Applying a Laplace
transform (see the Appendix), we derive the expression for
the amplitude c(t),

c(t) = γ

π
eiωat

∫ ∞

0
dω U (ω)e−iωt , (3)

with the kernel function

U (ω) = lim
ε→0+

F (ω)

[ω − ωa − γ δ(ω)]2 + [γF (ω) + ε]2
(4)

and the nonlinear Lamb shift

δ(ω) = 1

π
P

∫ ∞

0
dω̃

F (ω̃)

ω − ω̃
, (5)

where P denotes the Cauchy principal value. The dominant
frequency components entering the dynamics of c(t) are those
that are resonant in the kernel function U (ω). A necessary
condition for such resonances to occur is that the first term in
the denominator of U (ω) vanishes,

ωr − ωa

γ
= δ(ωr ). (6)
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FIG. 2. (Color online) Route from the single-mode to the multi-
mode coupling regime for different coupling strengths γ . The top row
shows the dimensionless kernel function U (ω) [Eq. (4)]. The bottom
row shows the dimensionless nonlinear Lamb shift δ(ω) [Eq. (5)]
for the same ω interval as above (note the different zooms for the
three columns). The left column shows the weak-coupling regime
for γ = 4 × 10−6 with a single peak in U (ω) (Purcell modified
spontaneous decay). The middle column shows the strong-coupling
regime for γ = 2.5 × 10−3 with a well-resolved Rabi splitting in
U (ω) (regime of damped Rabi oscillations). The right column shows
the multimode strong-coupling regime for γ = 1.44 with a multipeak
structure in U (ω) consisting of almost equidistant peaks (regime of
revivals). Closed circles label resonance values ωr of the kernel U (ω)
occurring at the intersections between the Lamb shift δ(ω) and the
dashed line (ω − ωa)/γ . At open circles (not shown in right column)
such intersections are nonresonant and do not lead to a corresponding
peak in U (ω) (see the text). The transition frequency ωa ≈ 19π of
the TLS coincides with the tenth resonance of the spectral function
F (ω) [Eq. (2)]. The reflectivity parameter η = 0.1 is such that the
mirror reflectivity |r(ωa)|2 = 0.9. Frequency ω is measured here in
units of the inverse half the cavity round-trip time.

This resonance condition is satisfied at the frequencies ωr ,
determined by the intersection of the nonlinear Lamb shift
δ(ω) and a straight line (ω − ωa)/γ (see a corresponding
graphical analysis in [29] for a simple form of a continuum).
Since, according to Eq. (5), every resonance in F (ω) produces
a dip followed by a peak in the Lamb shift, there may be
several such intersections, corresponding to multiple solutions
of Eq. (6). The corresponding resonances in the kernel U (ω)
can, however, be suppressed, whenever the spectral function
F (ω) has a maximum at the same resonance frequency. This
is the case if the kernel U (ω) = 1/γ 2F (ω) goes through a
minimum at ω = ωr .

Based on these observations, we will now investigate the
crossover from weak to strong coupling upon variation of the
coupling strength γ ; all other parameters, such as the spectral
function F (ω) and the mirror’s reflectivity factor η, will be
left unchanged. At very weak coupling γ = 10−4 (left panel
of Fig. 2), the straight line in Eq. (6) is very steep and thus
leads just to a single intersection, corresponding to a single
resonance at ωr ≈ ωa . All quantities in Eq. (4) can thus be
evaluated at ωa to very good accuracy and the kernel function
reduces to a Lorentzian centered around the slightly shifted
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FIG. 3. (Color online) Temporal evolution of the excited-state
probability |c(t)|2 of the TLS for the three cases shown in Fig. 2.
Time t is measured here in units of half the cavity round-trip time.
The left panel shows the weak-coupling regime (γ = 4 × 10−6)
featuring spontaneous decay (also shown on a log-lin scale in
the inset). The middle panel shows the strong-coupling regime
(γ = 2.5 × 10−3) with damped Rabi oscillations. The right panel
shows the multimode strong-coupling regime (γ = 1.44) featuring
pulsed revivals at multiple integers of half the cavity round-trip time.

frequency ωa + γ δ(ωa) with the width γF (ωa). By extending
the integration limit in Eq. (3) to −∞, we reproduce the Purcell
modified exponential decay of the TLS inversion [23], in good
agreement with a numerical solution of the Volterra equation
(1) (left panel in Fig. 3). This is the overdamped dynamics of
the TLS in the weak-coupling limit of cavity QED.

As γ increases to γ = 2.5 × 10−3 we enter the strong-
coupling regime, as indicated by the straight line now being
flat enough to intersect the nonlinear Lamb shift at three points
(middle panel of Fig. 2). Note that these three intersections give
rise to only two resonances ωr in the kernel U (ω) since the
middle frequency is very close to the resonance of F (ω) (see
the discussion above). As a consequence, the kernel function
U (ω) has a double-peak structure that is characteristic of the
single-mode vacuum Rabi splitting [24]. This energy splitting
introduces a new frequency scale, the Rabi frequency, which
is easily estimated from the resonance condition (6) to be√

2ωaγ . The inverse of the peak width provides the time
scale at which the Rabi oscillations decay, as confirmed by
independent numerical solutions of Eq. (1) (middle panel of
Fig. 3).

With a further increase of the coupling strength to γ = 1.44,
the straight line starts to intersect neighboring resonances
of δ(ω), involving an increasing number of cavity modes.
Thus, within the multimode strong-coupling regime it is
possible to couple to many cavity modes, including those
that reside far away from the transition frequency ωa (right
panel of Fig. 2). Note that, similar to the situation above,
only every second intersection with the Lamb shift produces
a resonance in the kernel U (ω) that correspondingly takes
on a multipeaked profile. If, as in our case, these peaks also
have an equidistant spacing to each other, then the interference
between these resonant modes produces a train of pulses in
the probability of the excited state |c(t)|2, corresponding to
pulsed revivals of the TLS inversion (right panel of Fig. 3).
With the revival time being equal to half the cavity round-trip
time, the straightforward explanation of this phenomenon is the
repetitive emission and subsequent reabsorption of radiation
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FIG. 4. (Color online) Destruction of the multimode strong-
coupling regime by broadening of the peaks in the spectral function
(2). The left column shows the mirror reflectivity parameter η = 0.9
(as in right panel of Fig. 2). The middle column shows η = 0.3. The
right column shows η = 0.015. The top row shows the dimensionless
kernel function U (ω). The bottom row shows the corresponding
excited-state probability |c(t)|2 of the TLS versus normalized time
t . The transition frequency ωa ≈ 19π and the coupling strength
γ = 1.44 are the same as in the right panels of Figs. 2 and 3.

by the TLS, when it is back-reflected by the cavity boundaries.
As such, this effect relies on the fact that the phases acquired
from all possible paths starting from and returning to the
position of the TLS differ only by integer multiples of 2π ,
a condition that strongly depends on the position of the TLS in
the cavity. Indeed, if we move the TLS away from the cavity
center, a much more irregular type of dynamics emerges (not
shown). We also checked explicitly on the limitations that the
revival effect is subject to in terms of the cavity opening.
For that purpose we performed numerical simulations for
cavities with smaller values of the mirror’s reflectivity factor
η = 0.3,0.015 (Fig. 4). We observe that for decreasing values
of η the overlap between neighboring resonant peaks in U (ω)
increases until they merge into a single wide resonance. As a
result, the revivals in the inversion of the TLS die out when all
resonances merge to a single peak, at which point the decay
will be just a simple exponential decay, no matter how large
the coupling strength γ is.

IV. COMPARISON WITH A SYSTEM-AND-BATH
FORMALISM

To verify the validity of the above results, we recalculated
the temporal decay in all of the three regimes from above using
a recently developed system-and-bath approach [34]. Under
the rotating-wave and Born approximations this approach can,
in principle, also be reduced to a single Volterra equation as in
Eq. (1). We have, however, been able to go beyond the Born
approximation by solving a coupled set of Volterra equations
for the TLS and damped cavity modes explicitly numerically.
These equations very well illustrate how costly it becomes
numerically to obtain the solutions for the temporal decay
without the Laplace transform employed above and how little

insight one gets into these solutions when they have to be ex-
plicitly integrated in time. The fact that we obtain very similar
results (for all the scenarios obtained above) with this more
complex approach confirms in turn the validity of the simple
and insightful strategy presented in the previous sections.

A. Total Hamiltonian

Our starting point is a Hamiltonian that includes altogether
five contributions from the resonator, the external region, the
TLS and the interaction of the resonator with the external
region and of the TLS with the resonator [see Eq. (81) in [34]],

H =
∑

λ

�ωλa
†
λaλ +

∫
dω �ω b†(ω)b(ω) + �ωa

2
σz

+ �

∑
λ

∫
dω[Wλ(ω)a†

λb(ω) + W�
λ(ω)aλb

†(ω)]

+
∑

λ

[gλaλσ
+ + g�

λa
†
λσ

−]. (7)

Note that the form of this Hamiltonian is a bit simpler as
compared to the one presented in [34] as we do not consider
multiple scattering channels outside the cavity.

The Hermitian resonator modes are described by a discrete
set of operators aλ and corresponding eigenfrequencies ωλ,
whereas the external radiation field corresponds to a contin-
uous set of operators b(ω) and frequencies ω. The operators
obey the usual canonical commutation relations (see Sec. II D
in [34] for more details). The resonator and external region
communicate with each other via the coupling matrix elements
Wλ(ω) defined as the expectation value of the operator LPQ

sandwiched between the resonator and external modes [see
Eq. (52a) in [34]]. This coupling operator is determined
through the Feshbach projection formalism, which consists
of separating space in two regions, the resonator Q and
the external region P . Finally, the action of the operator L
onto an arbitrary function φ is written as the decomposition
Lφ = LQQμ + LQP ν + LPQμ + LPP ν, where the functions
μ and ν reside inside the resonator and the external regions,
respectively. Correspondingly, the operators LQP and LPQ act
in the vicinity of the boundaries between the resonator and
external region (see Secs. II B and III C for more details). The
key point is that the total operator L, the cavity operator LQQ,
and external region operator LPP are Hermitian operators in
their regions of definition. The operators σz, σ+, and σ− are
the standard Pauli operators that describe the TLS and ωa

stands for its transition frequency. The coupling amplitude gλ is
given by

gλ = −i

(
�ωλ

2

)1/2

μμμ · uλ(ra), (8)

where μμμ is the dipole strength of the transition, uλ(r) stands
for the eigenfunctions of LQQ, and ra is the location of
the TLS.

It should be noted that in the Hamiltonian (7) the rotating-
wave approximation has already been applied in the following
ways. (i) The nonresonant terms in the system-and-bath part of
Hamiltonian [i.e., terms proportional to a

†
λb

†(ω) and aλb(ω)]
are neglected. This approximation is valid if the damping rates
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of the cavity resonances are substantially smaller than the
frequencies of interest. For our purpose this approximation is
indeed well fulfilled since the revival regime that we aim to
describe occurs exactly in this limit. (ii) Also the nonresonant
terms in the atom-field interaction (i.e., terms proportional to
a
†
λσ

+ and aλσ
−) are neglected, which is a commonly used

approximation.

B. Volterra equations

Since the Hamiltonian (7) conserves the total number of
atom and field excitations (due to the above rotating-wave
approximation) we can set up the following ansatz for our
solution to the Schrödinger equation:

|�(t)〉 = c(t)e−iωat/2|u〉|0〉
+

∑
λ

cλ(t)|l〉|1λ〉e−i(ωλ−ωa/2)t

+
∫

dωc(ω,t)e−i(ω−ωa/2)t |l〉|1(ω)〉, (9)

where the ket vectors |u〉 and |l〉 stand for the atom in
the upper and lower states, respectively. In Eq. (9) the ket
vectors |0〉, |1λ〉, and |1(ω)〉 represent the vacuum state of
the electromagnetic field, a single photon in cavity mode λ,
and a single photon in the external region with frequency
ω, respectively. We assume that the system at time t = 0 is
in the initial state |u〉|0〉. After straightforward algebra we
derive the following set of coupled differential equations for
the probability amplitudes c(t), cλ(t), and c(ω,t) introduced in
Eq. (9):

ċ(t) = − i

�

∑
λ

gλe
−i(ωλ−ωa )t cλ(t), (10a)

ċλ(t) = − i

�
g�

λe
i(ωλ−ωa )t c(t)

− i

∫
dωWλ(ω)e−i(ω−ωλ)t c(ω,t), (10b)

ċ(ω,t) = −i
∑

λ

W�
λ(ω)e−i(ωλ−ω)t cλ(t). (10c)

The initial conditions are c(0) = 1 and cλ(0) = c(ω,0) = 0.
Next, we formally integrate Eq. (10c) and plug the result

into Eq. (10b), which allows us to exclude the external region
from the consideration such that we finally obtain the set of
equations

ċ(t) = − i

�

∑
λ

gλe
−i(ωλ−ωa )t cλ(t), (11a)

ċλ(t) = − i

�
g�

λe
i(ωλ−ωa )t c(t) −

∫
dω

∑
λ′

Wλ(ω)W�
λ′(ω)

× e−i(ω−ωλ)t
∫ t

0
dτ e−i(ω′

λ−ω)τ cλ′(τ ). (11b)

C. Markov approximation

To simplify matters, we apply the so-called Markov
approximation in Eq. (11b) with respect to the cavity am-
plitudes cλ(t) such that memory effects with regard to the

outcoupling to the external radiation field are disregarded.
(Note that, most importantly, the memory effects within the
cavity are still carried along.) Specifically, we shift the initial
time of integration to −∞, let cλ(t ′) ≈ cλ(t), and, assuming
subsequent integration with respect to ω, make use of the
relation

e−i(ω−ωλ)t lim
σ→0

ei(ω−ωλ′ −iσ )τ

ω − ωλ′ − iσ

∣∣∣∣
τ=t

τ=−∞

→ e−i(ωλ′ −ωλ)t

[
P

(
1

ω − ωλ′

)
+ iπδ(ω − ωλ′)

]
. (12)

The differential equations for c(t) and cλ(t) are then

ċ(t) = − i

�

∑
λ

gλe
−i(ωλ−ωa )t cλ(t), (13a)

ċλ(t) = − i

�
g�

λe
i(ωλ−ωa )t c(t)

+
∑
λ′

�λλ′(ωλ′)e−i(ωλ′ −ωλ)t cλ′ (t), (13b)

where the matrix elements of the damping matrix �λλ′ are
given by

�λλ′(ωλ′) = −πWλ(ωλ′)W�
λ′(ωλ′)

+ iP
∫

dω
Wλ(ω)W�

λ′(ω)

ω − ωλ′
, (14)

which should be calculated in a discrete set of eigenfrequencies
ωλ only. The second term in Eq. (14) is similar to a Lamb shift
in that it accounts for a shift of the cavity resonances in an
open system with respect to the positions in the corresponding
closed system. Next we formally integrate Eqs. (13a) and (13b)
and end up with a set of coupled integral Volterra equations

c(t) = 1 − i

�2

∑
λ

gλg
�
λ

ωλ − ωa

∫ t

0
dτ [e−i(ωλ−ωa )(t−τ ) − 1]c(τ )

+ 1

�

∑
λλ′

gλ�λλ′(ω′
λ)

ωλ − ωa

∫ t

0
dτ [e−i(ωλ−ωa )(t−τ ) − 1]

× e−i(ω′
λ−ωa )τ c′

λ(τ ), (15)

cλ(t) = − ig�
λ

�

∫ t

0
dτ ei(ωλ−ωa )τ c(τ )

+
∑
λ′

�λλ′(ω′
λ)

∫ t

0
dτe−i(ωλ′ −ωλ)τ cλ′(τ ). (16)

D. One-dimensional dielectric cavity

We solve Eqs. (15) and (16) numerically for the geometry
shown in Fig. 1. Specifically, we consider the one-dimensional
cavity of length L now bounded at x = −L,0 by two thin semi-
transparent mirrors modeled by dielectric slabs of width d �
L with refractivity index n. Using the fact that the TLS couples
only to those modes that are symmetric with respect to the
center of the cavity (where the TLS is located), we replace our
original geometry by a more simple one. This new cavity runs
within [−L/2,0−] with Neumann boundary conditions at the
position of the TLS ∂xuλ(x = −L/2) = 0. On the right cavity
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edge we impose (for the closed system Q) a Dirichlet boundary
condition uλ(x = 0−) = 0 to remove a singular contribution
of the operator LQQ at this point [see, e.g., Eq. (52a) in [31]].
The corresponding cavity eigenvalue problem

d2

dx2
uλ(x) + ω2

λuλ(x) = 0 (17)

is finally solved with the eigenvalues ωλ = π (2λ − 1)/L
(λ = 1,2, . . .) and with the eigenvectors (inside the cavity)

uλ =
√

2

L
cos

[
ωλ

(
x + L

2

)]
. (18)

The coupling amplitudes between the TLS and the cavity
modes (8) reduce to

gλ = iμ

√
�ωλ

L
fc(ωλ). (19)

In the limit of n → ∞ and d → 0, keeping the mirror’s
transparency factor η = n2d finite, the channel modes (outside
the resonator) coincide with those calculated in [31] [see Eqs.
(55)– (58) therein],

ν(ω,x) = 1√
2π

(
e−iωx + i − ηω

i + ηω
eiωx

)
. (20)

To couple these cavity modes in the bounded domain Q to
the unbounded domain P we require the coupling elements
Wλ(ω) that enter the damping matrix �λλ′ ,

Wλ(ω) = (−1)λ

1 − iηω

√
ωλ

πωL
fc(ωλ). (21)

Here and in Eq. (19) we introduce the cutoff function
fc(ωλ) = e−(ωλ−ωa )2/(4ω2

c ) to eliminate the interaction with
high-frequency modes in the same way as was done in Sec. II.
To ensure the convergence of the integral in Eq. (14) also in
the low-frequency limit, we integrate from a frequency above
zero but below the first cavity resonance. Finally, we plug
the obtained expressions into Eqs. (14)–(16) and solve them
numerically with the initial conditions c(0) = 1 and cλ(0) = 0.

The results of our calculations are shown in Fig. 5 for two
typical values of the coupling strength within both the regime
of Rabi oscillations and the regime of revivals. We normalize
time to half the cavity round-trip time L/c and find again the
revivals occurring at integer multiples of these values. Note in
particular the very good correspondence that we find between
the results obtained from the model based on the CF state
representation of the LDOPS within a single Volterra equation
(1) and the system-and-bath formalism given by Eqs. (15) and
(16) above. This close correspondence confirms the validity
of our calculations and the difference in complexity between
the two calculations demonstrates the usefulness of the simple
and accessible approach presented in Sec. III.

V. CONCLUSION AND OUTLOOK

To summarize, we have shown how the emission process
of a two-level atom changes as a function of its coupling
strength to the electromagnetic field of an open multimode
resonator. Solving the Volterra equation for the temporal decay
through Laplace transform allowed us to obtain the decay

0 5 10 15 20
t

0
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1

|c(
t)|

2

0 1 2 3 4 5
t

FIG. 5. (Color online) Comparison between the results obtained
from a single Volterra equation [dark gray (red) curves] and from the
system-and-bath formalism [gray (orange) curves]. The calculations
are performed for the 1D geometry presented in Fig. 1 with the
mirror reflectivity parameter set to η = 0.18. The left panel shows
γ = 2.5 × 10−3 (regime of Rabi oscillations) and the right panel
γ = 1.44 (multimode strong-coupling regime). Time t is measured
in units of half the cavity round-trip time.

dynamics together with a corresponding graphical analysis that
provides an intuitive understanding of the different regimes
observed. On top of the familiar exponential decay and
damped Rabi oscillations in the weak- and strong-coupling
regimes, respectively, we identify, for very strong coupling, a
regime where the emitter couples to multiple modes, leading
to pulsed revivals of its initial excitation. We expect that
these predictions can be explicitly verified in various physical
systems dealing with a two-level-like emitter inside an open
multimode cavity. In particular, we have circuit QED setups in
mind (e.g., [6,35–37]), for which the coupling strength can be
tuned by engineering the two-level system appropriately.

ACKNOWLEDGMENTS

The authors would like to thank R. Luger,
M. Malekakhlagh, and C. Viviescas for helpful discussions.
Financial support from the Vienna Science and Technology
Fund through Project No. MA09-030 (LICOTOLI), the
Austrian Science Fund through Projects No. F25-P14 (SFB
IR-ON) and No. F49-P10 (SFB NextLite), the National
Science Foundation through the NSF CAREER Grant No.
DMR-1151810, and the Swiss NSF through Grant No.
PP00P2-123519/1 is gratefully acknowledged. We also
profited from free access to the computational resources of
the Vienna Scientific Cluster.

APPENDIX: LAPLACE TRANSFORM OF
THE VOLTERRA EQUATION

We solve the Volterra equation (1) by means of the standard
Laplace transform method (see [38,39], where different modal
weight functions have been considered), multiplying it by e−st

and integrating both sides of the equation with respect to time
from 0 to ∞. Here s = σ + iω is the complex variable so that
we reformulate our problem by solving it in the complex plane
of s. After straightforward calculations, the algebraic equation
for the Laplace transform c̃(s) = ∫ ∞

0 dt e−st c(t) is derived,
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FIG. 6. Contour completion in the complex plane s = σ + iω for
the calculation of the inverse Laplace transform (A2). Those contours
that give nonzero contribution are designated by numbers.

which is solved by

c̃(s) = 1

s + γ

π

∫ ∞
0 dω F (ω)

s+i(ω−ωa )

. (A1)

Next we perform the inverse Laplace transformation c(t) =
1

2πi

∫ σ+i∞
σ−i∞ ds est c̃(s) and obtain the formal solution for the

amplitude c(t),

c(t) = eiωat

2πi

∫ σ+i∞

σ−i∞

estds

s + iωa + G(s)
, (A2)

with

G(s) = γ

π

∫ ∞

0

dω F (ω)

s + iω
, (A3)

where σ > 0 should be chosen such that the real parts of all
singularities of c̃(s) are smaller than σ . It can be shown that
the function

J (ω) = lim
σ→0+

[G(σ + iω) − G(−σ + iω)] (A4)

is nonzero for −∞ < ω � 0. Therefore, the function G(s)
and, as a consequence, the whole integrand in Eq. (A2) exhibit
a jump along the negative part of the imaginary axis, which
is a branch cut. By equating the denominator of Eq. (A2) to
zero s + iωa + G(s) = 0, the poles sj are shown to satisfy the
equation

ωj + ωa = γ

π

∫ ∞

0
dω

F (ω)

ω + ωj

, σj = 0. (A5)

Thus, the poles (if at all existing) can be located on the
imaginary axis only. Moreover, we strictly prove, using a
graphical analysis and the fact that F (ω) � 0, that only a single
simple pole can reside in the positive imaginary axis that leads
to undamped oscillations at infinite time. For values of the
coupling strength γ larger than considered in this paper, such
a scenario emerges in the equations but is not considered here.
Thus, to evaluate the original integral (A2), we apply Cauchy’s
theorem to a closed contour shown in Fig. 6. We prove similarly
to Jordan’s lemma that the arc contribution is negligible and
the contribution of the small semi-circle around s = 0 is also
zero. Therefore, the only paths that remain are those around the
branch cut and the one we are looking for (see Fig. 6). Thus,
we derive the following expression for the amplitude c(t):

c(t) = eiωat

2πi

∫ ∞

0
dω e−iωt [�−(ω) − �+(ω)], (A6)

where

�±(ω)= lim
σ→0+

{
1

ω − ωa+i
[

γ

π

∫ ∞
0

dω̃F (ω̃)
±σ+i(ω̃−ω)±σ

]
}

.

(A7)

Employing the Sokhotski-Plemelj theorem, the integral in the
denominator of Eq. (A7) is rewritten in the limit of σ → 0 as

∫ ∞

0

dω̃ F (ω̃)

±σ + i(ω̃ − ω)
= −i

{
P

∫ ∞

0

dω̃ F (ω̃)

ω̃ − ω
± iπF (ω)

}
,

We finally end up with Eqs. (3)–(5) for the amplitude c(t) (see
Sec. III).
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We present an analytical solution of the single-photon quantum feedback in a cavity quantum electrodynamics
system based on a half-cavity setup coupled to a structured continuum. Our exact analytical expression constitutes
an important benchmark for quantum-feedback models and allows us to unravel the necessary conditions for
the previously reported numerical result that a single-emitter-cavity system, which is initially in the weak-
coupling regime, can be driven into the strong-coupling regime via the proposed quantum-feedback mechanism
[A. Carmele et al., Phys. Rev. Lett. 110, 013601 (2013)]. We specify the phase relations between the cavity mode
and the delay time and state explicitly the theoretical limit for a feedback effect in the single-photon regime. Via
the photon-path representation, we prove that the stabilization phenomenon relies on a destructive interference
effect and we discuss the stabilization time in the weak- and strong-coupling limits.
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I. INTRODUCTION

The basic phenomenon at the heart of any quantum
information processing network is the coherent exchange of
photonic and atomic excitations by means of a single emitter
in a microcavity. Advances in the design and fabrication
of microcavities allow very high quality factors and have
enabled multiple studies of cavity quantum electrodynamics
(CQED) in the strong-coupling limit [1–7]. Several applica-
tions have been proposed and already realized, such as single-
photon transistors, two-photon gateways, parametric down-
conversion, and the generation and detection of individual
microwave photons [8–11]. Furthermore, several quantum gate
proposals rely on a natural quantum interface between flying
qubits (photons) and stationary qubits (e.g., atoms). Here the
photons allow for secure quantum communication over long
distances, whereas atoms can be used for the manipulation and
storage of quantum information [11].

Application of CQED techniques requires that a single-
atom–single-photon coupling exceeds any photon loss and
radiative decay processes, such as spontaneous emission or
photon leakage. So, besides technological progress to increase
the quality factor of the cavities, a promising alternative
is to identify strategies to control and exploit potentially
advantageous properties of the environment coupling, which
go beyond the conventional effects of the environment such as
dissipation and undesired information loss.

A possible mechanism to stabilize qubits and desired quan-
tum states is quantum feedback based on the repeated action
of a sensor-controller-actuator loop. In such a case, a quantum
system is driven to a target state via the external control [12,13]
such that continuous measurements allow stabilization of the
target state, e.g., by a modification of the pumping strength. In
addition to these extrinsic control setups, experiments start
to explore a variety of intrinsic delayed feedback control
schemes, e.g., by using an external mirror in front of a
nanocavity [14]. Intrinsic quantum feedback is not based on
a continuous measurement process, but controls the quantum
state by shaping the environment appropriately [15–21].

Here we discuss how the initial weak atom-cavity coupling
is driven into the strong-coupling regime. In contrast to
Ref. [21], here we evaluate the quantum-feedback mechanism
analytically to specify the conditions for this stabilization
phenomenon, in particular the phase relation between the
cavity mode and the delay time imposed by the external mirror.
Furthermore, we state the theoretical limit for a feedback effect
on the single-excitation level and extend our investigation from
the weak- to the strong-coupling regime. By expanding our
solution with the von Neumann series, we can demonstrate
that the effect relies on a destructive interference effect of
incoming and outgoing photon wave packages and illustrate
this in a photon-path representation picture. Our proposed
control scheme has potential applications for quantum error
correction [22], quantum gate purifying [23], and quantum
feedback [13].

II. MODEL

The system consists of a microcavity system of length L′
with a two-level emitter coupled to a single-cavity mode (see
Fig. 1). Furthermore, the cavity exhibits photon loss due to
its coupling to external modes. An external mirror, placed
at a distance of L, introduces a boundary condition to the
external mode structure and causes a feedback of lost cavity
photons into the cavity. We assume that the microcavity length
L′ � L is very short in comparison to L to allow a single-
mode description for the emitter-cavity interaction. This kind
of quantum self-feedback can be realized via a shaped mode
continuum in a photonic waveguide. Due to the finite cavity-
mirror distance L and the quasicontinuous mode structure of
the semi-infinite lead, a delay mechanism is introduced into
the system at τ = 2L

c0
, with c0 being the speed of light in

vacuum. To describe the corresponding physics we work with
the following Hamiltonian within the rotating-wave and dipole
approximations [24]:

H/� = −γ (σ−a† + σ+a) −
∫

dkG(k,t)a†dk + G∗(k,t)d†
ka,

(1)
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FIG. 1. (Color online) Implementation of an intrinsic quantum-
feedback mechanism via a quasicontinuum, realized by a photonic
crystal waveguide with length L, which is supposed to be considerably
larger than the cavity length L′. The waveguide is a half cavity and
allows the exchange of cavity photons with waveguide photons due
to the photon leakage G(k). The photons inside the cavity interact
with a single emitter (coupling strength γ ).

where a rotating frame is chosen in correspondence to the
free-energy contribution of the Hamiltonian. The emitter
is described via the Pauli matrices with σ+ (−) being the
raising and lowering operators of the two-level system (TLS),
respectively. In the following, the atomic energy is assumed
to be on resonance with the single-cavity mode. A photon
annihilation (creation) in the cavity is described with the
bosonic operator a† (a) and γ is the coupling between the
two-level system and the cavity mode. The coupling strength
between the emitter and the field mode is assumed to be
of the order of γ = 50 μeV [2,25,26]. The cavity photons
interact with the external modes d

(†)
k in front of the mirror

via the tunnel Hamiltonian coupling elements G(k,t). Due to
the rotating frame and the interference with the backreflected
signal from the mirror, these coupling elements depend both
on time t and on the wave number k, resulting in the
expression G(k,t) = G0 sin(kL) exp[i(ω0 − ωk)t], where G0

is the bare tunnel coupling strength and ω0 and ωk stand for
the frequencies of a single-cavity mode and half-cavity modes,
respectively. As we will see below, this specific form of G(k,t)
will determine the nature of the feedback on the cavity.

A. Single-photon limit

If no other pump mechanism or loss channels are intro-
duced, the system dynamics described by the Hamiltonian
(1) can be solved in the Schrödinger picture, following
Refs. [27,28]. In the single-photon limit, the total wave
function reads

|�〉 = ce|e,0,{0}〉 + cg|g,1,{0}〉

+
∫

dk cg,k|g,0,{k}〉, (2)

where |e,0,{0}〉 denotes the excited state of the two-level
system with the cavity and the waveguide being in the vacuum
state, |g,1,{0}〉 stands for a single photon residing in the
cavity and the two-level system as well as the radiation
field in the waveguide being in the ground state. Finally,
|g,0,{k}〉 describes the ground state of the two-level system
with exactly one photon in the waveguide of mode k. The

0 5 10 15
t/τ

0

0.1

0.2
Photon Density
Excited State Density

FIG. 2. (Color online) Excited-state density |ce(t)|2 of the two-
level system (black dashed line) and the photon density inside the
cavity |cg(t)|2 (orange solid line) in the quasicontinuum model.
The quantum-feedback mechanism (κ/γ = 2) induces a regular
oscillation pattern at multiples of τ = 2π/γ .

variables ce,cg,cg,k denote the corresponding amplitudes of
the three different states above.

Applying the Schrödinger equation, we arrive at the
following set of linear partial differential equations:

∂tce = iγ cg, (3)

∂tcg = iγ ce + i

∫
dk G(k,t)cg,k, (4)

∂tcg,k = iG∗(k,t)cg. (5)

First, we numerically solve this coupled set of differential
equations assuming that initially at t0 = 0 the TLS is in the
excited state ce(t0) = 1 and there are no photons inside the
cavity cg(t0) = 0 or in the external region cg,k(t0) = 0. To
introduce a delay time corresponding to τ = 2L/c0 = 2π/γ ,
we choose a mirror resonator distance L = πc0/γ .

The results for the dynamics of the excited state and photon
density are shown in Fig. 2. In the time interval [0,τ ] we
find the conventional exponential decay as described by the
Wigner-Weisskopf model in the weak-coupling limit. After
the first round-trip τ = 2L/c0, the photon density and after
a small delay also the excited-state density are driven by the
quantum feedback. In this time interval [τ,2τ ], the amplitude
of the photon density is smaller than the amplitude of the
excited case, since the damping mechanism acts only on the
photons inside the cavity. However, for longer times, the
asymmetry between the amplitudes of the excited state and
the photon density vanishes, so the system sets into a state
of coherent Rabi oscillations characterized by approximately
equal maxima of both densities (see the asymptotic dynamics
for t/τ � 8 in Fig. 2). In this long-time limit, the amplitude for
the cavity photon population stabilizes at around 15% of the
maximum photon population in the first time interval [0,τ ].
This remarkable effect has been reported in Ref. [21] and
will now be analyzed analytically and thereby explained in
more detail. In particular, we will focus on the following two
specific questions: (i) How sensitive is this effect on the chosen
parameters, in particular on the choice of the time delay?
(ii) Can the oscillation amplitude be increased or is there an
intrinsic limit? To answer these questions, we will first derive
a simplified picture of the dynamics by solving Eqs. (3)–(5) in
the Markovian limit.
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B. Analytical quantum feedback

The initial decay and the subsequent oscillations observable
in Fig. 2 indicate that the underlying physical processes that
govern this system consist of both a typical (Markovian) cavity
loss and a (non-Markovian) memory kernel with significant
contributions around multiples of the delay time τ . Assuming
that the rotating-wave approximation and the quasicontinuum
assumption hold, the coupling to the external modes can
be eliminated from the problem. To achieve this, Eq. (5) is
integrated formally and inserted into Eq. (4), resulting in the
following expression:

∂tcg = iγ ce − κcg + κcg(t − τ )
(t − τ )eiω0τ , (6)

with κ = πG2
0/2c0. This reduced expression has the advan-

tages of being easily solvable numerically and being amenable
to an analytical solution through a Laplace transformation.
With the initial conditions that neither cavity nor continuum
photons are present in the beginning, i.e., ce(0) = 1, the
equations read after Laplace transformation

sce(s) = 1 + iγ cg(s), (7)

scg(s) = iγ ce(s) − κcg(s) + κcg(s)e−(s−iω0)τ , (8)

where s is the complex frequency parameter of the Laplace
transformation. As can be seen from Eq. (6), the solution
consists of a dynamical component without the mirror-induced
feedback t � τ and one with the feedback for t > τ .

We now derive a solution for the photon-assisted ground
state for t � τ , which is the cavity-damped Jaynes-Cummings
model [29]

cg(s) = iγ

s2 + γ 2 + κs
= iγ

(s + κ/2)2 + γ 2 − κ2/4
. (9)

This leads directly to the damped Jaynes-Cummings solutions
in the time domain as expected for times t � τ , when the
cavity system is not affected by the feedback mechanism:

cg(t) = i
sin[

√
1 − (κ/2γ )2γ t]√
1 − (κ/2γ )2

e−κ/2t . (10)

Note that, due to the cavity damping, not only is the amplitude
reduced but also the Rabi oscillation frequency is reduced by
a factor of

√
1 − (κ/2γ )2. The cavity loss leads inevitably to

an effectively reduced value for the coupling strength and as
a result, the frequency of damped Rabi oscillations decreases.
As we will see below, this restriction is lifted if a feedback
mechanism is present.

Now we solve the dynamics for times t > τ . This leads to an
additional term in the denominator. By using a geometric series
expansion, i.e., (1 − q)−1 = ∑

n qn for q < 1 and n → ∞,
Eq. (9) can be written as

cg(s) = iγ

(
1 − κs exp[−(s − iω0)τ ]

(s + κ/2)2 + γ 2 − κ2/4

)−1

× [(s + κ/2)2 + γ 2 − κ2/4]−1

= iγ
∑

n

(
κs exp[−(s − iω0)τ ]

(s + κ/2)2 + γ 2 − κ2/4

)n

× [(s + κ/2)2 + γ 2 − κ2/4]−1. (11)
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FIG. 3. (Color online) Comparison between numerical calcula-
tion and the Laplace transformed analytical solution valid until t = 3τ

with κ/γ = 2.

Due to the linearity of the Laplace transformation, the solution
in the time domain can be obtained via the method of partial
fraction expansion and the convolution property. However, the
expression is very lengthy and must be calculated for every
time interval [nτ,(n + 1)τ ], separately. Since we are interested
in the weak-coupling regime, we can choose the parameter to
be γ = κ/2 to simplify the expression into

cg(s) = iκ/2

(s + κ/2)2

∑
n

(
κse(iω0−s)τ

(s + κ/2)2

)n

. (12)

Using now the binomial series and Laplace transformation
n!/(s − a)n+1 → tn exp[at], we get an expression in the time
domain

cg(t) = i

2

∞∑
n=0

n!2n+1e−κ/2(t−nτ )+iω0nτ
(t − nτ )
n∑

k=0

× (−1)k

k!(n − k)!

[κ/2(t − nτ )]n+1+k

(n + 1 + k)!
. (13)

In Fig. 3 the numerical solution of Eq. (3) coupled with
Eq. (6) is compared with the analytical solution (13) for the
time interval [0,3τ ]. The excellent agreement found between
these two solutions confirms the validity of our calculations.
For longer times, more terms from the series expansion (13)
contribute to the solution via 
(t − nτ ), but the analytical
solution become very lengthy, i.e., for t ∈ [0,nτ ] up to
n(n − 1) terms contribute. As the next step, we derive the
long-time behavior using the residuum method.

C. Long-time solution

The long-time dynamics of the coupled system is directly
related to the singularities in the contour integral of the Laplace
transformed function [30]. To demonstrate this explicitly, we
need to find the singularities of the photon-assisted ground-
state amplitude

cg(s) = iγ

s2 + γ 2 + κs − κse−(s−iω0)τ
. (14)

The singularities are found by setting the denominator to zero.
We assume a pure oscillation behavior in the long-time limit,
i.e., where s is purely imaginary. We set s = ±iγ and get

− γ 2 + γ 2 ± iγ κ(1 − e∓iγ τ eiω0τ ) = 0, (15)
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from which it immediately follows that

ei(ω0∓γ )τ = 1. (16)

We now need to find a delay time τ in a way that for ±iγ this
equation is valid. As it turns out, the corresponding singularity
condition can be matched for the following two cases:

exp(iγ τ ) = exp(iω0τ ) = 1, (17)

exp(−iγ τ ) = exp(iω0τ ) = 1. (18)

In order to satisfy these conditions we observe that we can
freely choose the delay time with respect to the coupling
strength by adjusting the length L between the cavity and
mirror accordingly. For instance, if we choose γ τ = 2πm

and at the same time tune the resonance frequency such that
ω0τ = 2πl, where l,m are integer numbers, then the conditions
(17) and (18) are satisfied. [Note that there are also three other
obvious constraints on τ and γ to satisfy the conditions (17)
or (18), but they are not discussed below.] As a result, we
achieve a purely coherent asymptotic solution with a minimum
of dephasing and a maximum amplitude, corresponding to the
fact that the pole does not contain any decaying term. Indeed,
we derive the following expression for the asymptotic behavior
of the photon density inside the cavity:

c(i)
g (t) = 1

2πi

∮
ds cg(s)est ≈

∑
poles

Res[cg(s)est ]

=
∑
±

lim
s→±iγ

(s ± iγ ) exp(s2nπ/γ )iγ

(s+iγ )(s − iγ )+κs[1− exp(−s2mπ/γ )]
.

(19)

Using now L’Hôpital’s rule and taking the limits s → ±iγ ,
the solution for cg(t) reads

cg(t) = i sin[γ t]

1 + κmπ/γ
. (20)

In Fig. 4 the numerical solution and the analytical long-time
solution is plotted for τ = 2π/γ (i.e., when m = 1) up to
several τ . The agreement is excellent with the long-time so-
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FIG. 4. (Color online) Comparison between the numerics (or-
ange curve) and long-time solution determined by the residuum
contribution only (black curve) for an initially excited TLS ce(0) = 1
and κ/γ = 2. After several τ , the analytical long-time solution and the
numerics coincide. Note that the long-time solution is only valid for
t � 10τ . We plotted the solution for short times only for illustration
purposes.

lution accurately recovering the amplitude and the oscillation
frequency of the numerical solution. Interestingly, for κ = 0,
we recover the Jaynes-Cummings solution as in Eq. (10) with
κ = 0. In contrast to Eq. (10), we see, however, that the
cavity loss does not modify the frequency of vacuum Rabi
oscillations, which is now equal to the coupling strength γ ,
and only damps the corresponding amplitude. In this context,
we discover a maximum amplitude for the feedback effect via
this proposed mechanism. It is seen that Eq. (20) yields the
following amplitude of the quantum-feedback-induced Rabi
oscillations for τ = 2π/γ : 1/(1 + κπ/γ )2. Therefore, with
κ = 2γ , the maximum amplitude is approximately 0.02, in
correspondence with Fig. 4, which is 15% of the maximum
photon amplitude in the first time interval [0,τ ]. With these
results at hand, we can now also answer the questions raised
above.

(i) The effect of stabilized Rabi oscillations in the long-time
limit depends strongly on the chosen time delay τ , which has
to be chosen so as to satisfy one of the conditions (17) and
(18) that lead to asymptotically undamped Rabi oscillations.
Furthermore, the factor exp(iω0τ ) plays a crucial role to
decide whether quantum feedback leads to a stabilized Rabi
oscillation or to a damped feedback situation. However, the
effect depends only quantitatively (rather than qualitatively) on
the cavity loss κ and coupling strength γ , besides the obvious
restriction that both of them are unequal to zero.

(ii) For a given ratio between the coupling strength and the
cavity loss x = κ/γ , there is a maximum amplitude that is
given for the above case by (1 + xπ )−2.

D. Photon-path representation

To give an intuitive explanation for this effect of recovered
Rabi oscillations in the weak-coupling limit, we visualize the
resulting cavity dynamics in the framework of the photon-path
representation [31,32]. For this purpose we rewrite the system
of equations of motion (7) and (8) in the Laplace domain as(

ce(0)
cg(0)

)
= s(1 − L)

(
ce(s)
cg(s)

)
, (21)

with the scattering matrix

L =
(

0 i
γ

s

i
γ

s
− κ

s
(e−τs − 1)

)
. (22)

Due to the nonzero determinant, the matrix can be inverted
and using the Neumann expansion, we get, for ||L|| < 1,
(

ce(s)
cg(s)

)
= 1

s

∞∑
n=0

Ln

(
ce(0)
cg(0)

)

=
∞∑

n=0

[
(iγ )n

sn+1

(
0 1
1 κ

iγ
(e−τs − 1)

)n](
ce(0)
cg(0)

)
. (23)

Now the dynamics is written in a very complicated manner
but in a way that the photon path (represented by scattering
processes due to L) becomes visible. With this expansion,
one can represent the dynamics as a series of single-scattering
events by multiple application of the matrix, which swaps
the excitation from ce to cg and includes the cavity loss and
the gain from the feedback. This becomes especially apparent
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FIG. 5. (Color online) Fast stabilization of Rabi oscillations of
the cavity photon number in the strong-coupling limit γ = 20κ after
only one round-trip τ , when the feedback from the waveguide is
present (orange curve). Initially, the excitation is stored in the TLS
[ce(0) = 1].

when writing down the single terms of the Laplace transform
and then transforming them back into the time domain. In
particular, for the ground-state probability such an expansion
reads (only terms up to t3 are kept)

cg(t) = (iγ )

1!
− (iγ )κ

2!
t2 + (iγ )3

3!
t3 + (iγ )κ2

3!
t3 + · · ·

+ (iγ )κ

2!
(t − τ )2θ (t − τ )

− (2iγ )κ2

3!
(t − τ )3θ (t − τ ) + · · · . (24)

From the structure of this expansion it follows that undamped
Rabi oscillations can be viewed as a result of an interference
between incoming and outgoing photonic paths provided τ =
2π/γ . In other words, the strong-coupling feature is produced
by a destructive interference effect of the photon paths at the
point within the waveguide, where the tunneling event between
the cavity and waveguide takes place. This expansion explains
furthermore that it takes a minimum time for this effect to
unfold, since at least two dissipatively interacting waves need
to be in the waveguide.

E. Strong-coupling limit

To complete the picture, we investigate the proposed
feedback mechanism via a quasicontinuum in the strong-
coupling limit. In Fig. 5 the dynamics with and without
feedback is plotted for a coupling strength γ = 20κ . Clearly,

Rabi oscillations are visible with and without feedback. If
no feedback is present, however, the amplitude of the Rabi
oscillations are damped fast without changing the frequency.
With a feedback and a chosen delay time of τ = π/2γ , on
the other hand, the amplitude loss is stopped at very early
times already: Already after one round-trip the amplitude
stays constant for all times, if no other loss mechanism inside
or between the mirror and cavity is present. We explain the
acceleration of the stabilization feature by the fact that for the
strong-coupling regime the incoming and outgoing photons
already interfere efficiently after one round-trip. In contrast,
in the weak-coupling limit the in and out tunneling does not
overlap for the first three round-trips and as a consequence
interference takes place at longer times only. If we choose a
larger round-trip time τ , also in the strong-coupling regime,
a higher number of round-trips nτ is necessary to reach the
point of stabilized Rabi oscillations.

III. CONCLUSION AND OUTLOOK

We have discussed an approach to stabilize single-emitter
CQED via a quantum feedback mechanism induced by an
external mirror. Our analytical solution shows that depending
on the chosen parameters, an intrinsic limit of the feedback
effects exists. For a system initially in the weak-coupling
regime (before the feedback modifies the system dynamics)
we demonstrate that the quantum feedback can at most recover
approximately 15% of the maximum cavity occupancy in
the first time interval. Our analytic calculations demonstrate
furthermore that the quantum-feedback-induced Rabi oscil-
lations are indeed coherent and follow a typical differential
delay equation with an appropriate inhomogeneity to drive the
system into the strong-coupling regime. Our results extend the
set of exact analytical solutions in the field of coherent atom
CQED and form a starting point to establish a framework for
a theoretical description of coherent quantum feedback.
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[15] W. Kopylov, C. Emary, E. Schöll, and T. Brandes, New J. Phys.
17, 013040 (2015).

[16] A. Grimsmo, A. Parkins, and B. Skagerstam, New J. Phys. 16,
065004 (2014).

[17] P. Strasberg, G. Schaller, T. Brandes, and M. Esposito, Phys.
Rev. E 88, 062107 (2013).
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