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By example of the nonlinear Kerr mode driven by a laser, we show that hysteresis phenomena in systems
featuring a driven-dissipative phase transition can be accurately described in terms of just two collective,
dissipative Liouvillian eigenmodes. The key quantities are just two components of a non-Abelian
geometric connection, even though a single parameter is driven. This powerful geometric approach
considerably simplifies the description of driven-dissipative phase transitions, extending the range of
computationally accessible parameter regimes, and providing a new starting point for both experimental
studies and analytical insights.
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Geometric effects manifest themselves in various fields
of physics. Being very compact and elegant, a geometric
formulation of a system’s dynamics also provides a deeper
insight by revealing the physical redundancy in the
description and paves the way to a topological classification
of those properties that remain stable under eventual
external perturbations. In closed quantum systems, the
most prominent example of a geometric effect is given
by the Berry’s phase [1], which is accumulated by a
system’s wave function along with a trivial dynamical
phase during an adiabatic cyclic evolution of the system’s
parameters. Its emergence relies on the gauge freedom in
the choice of the wave function’s phase. Physically, this is
just the coordinate system choice for a transverse spin
driven by a rotating magnetic field [2]. Geometrically, it is
interpreted as a holonomy effect of the parallel transport in
a specific fiber bundle [3]. The Berry connection form and
the associated Chern number have become important tools
for classifying ground state properties of topological
insulators and superconductors [4–7], skyrmionic spin
textures [8–10], and topological photonic [11–13] and
optomechanical crystals [14,15].
In open systems, the question about a possible geometric

description of a system’s dynamics is more subtle, since it
is governed by a master equation for the system’s reduced
density matrix, in which the phase gauge freedom seems to
disappear at first sight. Sarandy and Lidar [16,17] devel-
oped a formal approach valid for slowly varying Lindblad
superoperators when the time evolution of the density
matrix can be represented in terms of independently
evolving Jordan blocks associated with degenerated eigen-
values. They also treated the time-local master equation in
analogy by the Schrödinger equation for closed systems.
However, a direct transfer of closed system insights is

generically obstructed by the dissipative character of open
system dynamics, which is reflected in properties of the
Liouvillian supermatrix. First, it is not Hermitian, which
implies that, in general, its left and right eigenvectors are
not related to each other by the Hermitian conjugation, even
though they correspond to the same (complex-valued)
eigenvalue. Second, the Liouvillian supermatrix possesses
a (usually nondegenerate) zero eigenvalue, whose right
eigenvector corresponds to a unique steady state, and the
left one is independent of system parameters, ensuring the
trace conservation during the time evolution. Hence, a
gauge freedom in the steady state is absent, and an
observation of geometric effects, in close analogy to closed
systems, is impossible in the steady state [18].
There are, however, other possibilities to retrieve geo-

metric structures in open system dynamics. For example,
they can emerge in the system’s response functions [19,20]
or in observable quantities like, e.g., a pumped charge
through a quantum dot [21]; see Ref. [18] for a review of
different approaches to the geometric description of open
systems and the related effects. Moreover, dissipation can
also serve as a powerful resource for generating topologi-
cally protected edge states [22] or it can lead to non-
adiabatic dynamics upon encircling of a topologically
nontrivial exceptional point [23,24]. In this context, it is
desirable to understand conditions under which geometric
effects can arise in open systems.
In this Letter, we demonstrate how the Sarandy-Lidar

geometric connection arises in a more general context of
open quantum systems undergoing the driven-dissipative
phase transition (DPT) [25] and having no exact degen-
eracy. As it will be demonstrated later, this connection is
clearly manifested in experimentally measurable quantities.
We study a basic open quantum system, the so-called Kerr

PHYSICAL REVIEW LETTERS 123, 110604 (2019)

0031-9007=19=123(11)=110604(6) 110604-1 © 2019 American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.123.110604&domain=pdf&date_stamp=2019-09-13
https://doi.org/10.1103/PhysRevLett.123.110604
https://doi.org/10.1103/PhysRevLett.123.110604
https://doi.org/10.1103/PhysRevLett.123.110604
https://doi.org/10.1103/PhysRevLett.123.110604


nonlinearity model [26], and show that the geometric
description is adequate to experimental protocols in which
a characteristic timescale tc of a parameter change is
comparable to the lifetime of metastable states present in
this system. The importance of metastable states in the
understanding of DPT has been recently realized in
Refs. [27–29]. Here we establish the powerful approach
in which the metastable dynamics can be efficiently treated
in terms of just two Liouvillian modes and two components
of the Sarandy-Lidar geometric connection, despite the fact
that the dynamics is emphatically strongly nonadiabatic
relative to the smallest internal timescale generated by DPT.
The gauge freedom in this context is unrelated to phase
factors being provided instead by rescaling of the lengths of
the Liouvillian mode vectors [18]. The corresponding
holonomy effect results in nonzero hysteresis areas in
parametric dependence of observable quantities. We argue
that our description is generally applicable to all open
quantum systems featuring metastable dynamics near DPT
and that it sheds new light on the relation between multi-
valued solutions of nonlinear semiclassical (mean-field)
equations of motion [30–34] and the linear master equation
with a unique parametric solution for the density matrix.
We exemplify our idea by considering the Kerr non-

linearity model (see Fig. 1), which consists of a weakly
anharmonic (jUj ≪ ωc), high-quality (κ ≪ ωc) single-
mode cavity pumped by a strong (F ≫ κ) and possibly
off-resonant laser field (detuning δ ¼ ωp − ωc ≠ 0). Here
U is the strength of the Kerr self-interaction of the cavity
photons, ωc and ωp are the cavity and pump frequencies, κ
is the cavity loss rate, and F is the laser field amplitude. The
system’s dynamics is governed by the Lindblad master
equation _ρðtÞ ¼ −i½H; ρðtÞ� þ κD½b�ρðtÞ≡ −iLρðtÞ for
the cavity reduced density matrix ρðtÞ, which is expressed
in the rotating frame in terms of the quantum Hamiltonian
H ¼ −δb†bþ ðU=2Þb†2b2 þ Fðbþ b†Þ and the dissipa-
tive superoperator D½b�ρðtÞ ¼ bρb† − 1

2
b†bρ − 1

2
ρb†b.

Here b† and b are the bosonic creation and annihilation
operators of the cavity photons.

Vectorizing ρðtÞ, one can find the steady state solution
jρssÞ ¼ limt→∞jρðtÞÞ from the linear equation LjρssÞ ¼ 0,
where L is the Liouvillian supermatrix, and the Dirac-like
bra ð•j and ket j•Þ notations for the Liouvillian left and right
eigenmode vectors are introduced. For the cases of interest,
the Liouvillian supermatrix possesses a zero eigenvalue,
and the steady state solution is unique and independent of
initial conditions. The nonzero Liouvillian eigenvalues
λq ¼ ωq − iγq labeled by q ¼ 1; 2;…, which result from
the left ðρ̄qjL ¼ λqðρ̄qj and rightLjρqÞ ¼ λqjρqÞ eigenvalue
problems, govern the system’s dynamics jρðtÞÞ ¼ jρ0ÞþP

q≠0 jρqÞe−iλqtðρ̄qjρðt ¼ 0ÞÞ towards the steady state
jρssÞ≡ jρ0Þ. Here ωq are the oscillation frequencies and
γq > 0 are the relaxation rates. In the following, we order
eigenvalues λq according to the increasing value of
γq (i.e., λ1 has the smallest value of −Imλ1 ¼ γ1). Left
and right eigenvectors obey the biorthogonality relation
ðρ̄q0 jρqÞ ¼ δq0q, where ðρ̄q0 jρqÞ ¼ tr½ðρ̄q0 Þ†ρq� is the Hilbert-
Schmidt scalar product. The left eigenvector belonging to
the zero eigenvalue is independent of the system parameters
and guarantees the trace preservation ðρ̄0jρðtÞÞ¼tr½ρðtÞ�¼1
(biorthogonality relation).
At certain parameter values, the Liouvillian spectrum

fλqjq ¼ 0; 1;…g undergoes a nearly closing of the dis-
sipative gap [35]: γ1 becomes vanishingly small as com-
pared to κ, though remaining finite; see Fig. 2(a) for
illustration. (Note that the gap is completely closed only
in the effective thermodynamic limit featuring the DPT
[29,36].) The system enters the regime of the critical
slowing-down characterized by the presence of long-lived
metastable states [27]. At the same time, the steady mean-
field solution, jβssj2 ¼ jhbij2, which satisfies the nonlinear

FIG. 1. Single-mode cavity (frequency ωc, loss rate κ) pumped
by a laser field (amplitude F, frequency ωp). Hysteretic behavior
of the cavity occupation number n under a cyclic sweeping
of δ ¼ ωp − ωc is sketched by brown symbols inside circles.
The red and blue color map illustrates the sweeping range
ωmin
p ≤ ωp ≤ ωmax

p .
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FIG. 2. (a) γq for few values of q. (Dashed line) tc ¼ 10=κ is
the duration of a step used in a staircase protocol sketched in
Figs. 3(a) and3(b).Grayarea indicates thecritical regionof thewidth
≈21.8κ. (b) (Solid line) The cavity occupation number n ¼ hb†bi
for thequantumsteady statevsdetuningδ. (Dashed lines) Themean-
field solution jhbij2 shown in the same range of δ. The parameter
values U ¼ −0.5 and F ¼ 4 in the units of κ.
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algebraic equation jβssj2ðjβssj2 − δ=UÞ2 þ jβssj2ðκ=2UÞ2 ¼
F2=U2, is multivalued (the so-called optical bistability
[26]). As a result, its shape considerably deviates from
that of its quantum counterpart n ¼ tr½b†bρss� (mostly in
the critical regime of the control parameter δ) which is
always unique [see Fig. 2(b)], but in the effective thermo-
dynamic limit it is characterized by an infinite slope of the
transition line between two different branches [29,36]. In
general, such a discrepancy between quantum and semi-
classical solutions signals the breakdown of a mean-field
description.
In this regard, it becomes necessary to reconcile a

semiclassical description of the critical multistable behav-
ior in a nonlinear model, which is very efficient in
predicting hysteretic effects seen in various experiments
(see, e.g., [33,37]) and the Liouvillian description of the
same system which, on one hand, captures quantum
fluctuations and, on the other hand, predicts a unique
steady state solution in generic models. In Refs. [35,38], it
was proposed that the hysteresis in Markovian models can
be dynamically simulated by a time-periodic change of the
system’s parameters with the appropriately chosen param-
eter ramp velocity [35] or modulation frequency [38]. Such
a dynamical hysteresis has been recently observed exper-
imentally [39].
Here we show how a complete reconciliation of semi-

classical and Liouvillian ways of describing critical phe-
nomena in open quantum systems is naturally achieved by
introducing into the theory of additional timescales char-
acterizing a typical duration of an experiment and other
scales associated with parameter ramps and measurement
protocols. In particular, we introduce the timescale tc,
which is preset as the waiting time between two successive
parameter changes. In the parameter regime close to the
driven DPT, where a clear separation γ1 ≪ γq≥2 of the
relaxation rates takes place, it is meaningful to choose tc in
such a way that γ1 ≪ 1=tc ≪ γq≥2, as shown in Fig. 2(a).
Choosing the quantum steady state as the initial condition
just at the entrance δmin to the critical region (left edge of
the gray area [40]), we consider the first experimental run
by abruptly changing the control parameter to the value
δmin þ Δδ and letting the system evolve during the time tc
[41]. After that the system’s observables are being
measured in the metastable state jρms

δminþΔδÞ ≈ jρ0δminþΔδÞ þ
jρ1δminþΔδÞe−tcγ1ðδminþΔδÞðρ̄1δminþΔδjρ0δmin

Þ [42]. Repeating this
procedure N times, where the number N should be large
enough to reach the right edge of the critical region
at δmax [see Fig. 2(a)], we relate the system’s metastable
states at successive (k − 1)th and kth stages of the
experiment by the recursive expression jρms

δk
Þ≈jρ0δkÞþ

jρ1δkÞe−tcγ1ðδkÞðρ̄1δk jρms
δk−1

Þ, with δk¼δminþkΔδ and 1≤k≤N.

Taking the observable of interest Ô, we collect the dataset
of values Ok ¼ tr½Ôρms

δk
�, which are depicted in Figs. 3(c)

and 3(d) by circles.

Analogously, we start from the value δmax and perform
the same procedure with descending values δ0k ¼ δmax−
kΔδ. A sequence of metastable states along the reversed
path in the one-dimensional parameter space is, however,
different from the earlier obtained direct-path sequence
even for the same values of δ. Hence, the observables are
also different; see again Figs. 3(c) and 3(d), where the
reversed-path observable values are depicted by triangles.
Although both discrete datasets are obtained with the help
of the same recursive expression, the difference between
them arises due to the fact that in the first case the recursion
is progressive, while in the second case it is regressive. So,
the hysteretic behavior of observables in a typical exper-
imental procedure is retrieved from the nonzero Liouvillian
mode γ1, which is responsible for the system’s dynamics
rather than for its steady state.
Comparing with each other the states jρms;�

δ Þ ¼
jρ0δÞ þ χ�δ jρ1δÞ, corresponding to the same value of δ and
obtained from the ascending (sign “þ”) and descending
(sign “−”) staircase ramping protocols shown in Figs. 3(a)
and 3(b), we notice that the real-valued coefficients χþδ and
χ−δ depend on a gauge choice. The gauge freedom in the
present setting is provided [16–18] by a possibility to
simultaneously rescale the left ðρ̄qδ j → ð1=gq;δÞðρ̄qδ j and the
right jρqδÞ → gq;δjρqδÞ Liouvillian eigenvectors with q ≥ 1

by the reciprocal real-valued coefficients. These trans-
formations leave invariant the biorthogonality relations.
For q ¼ 0, this freedom is not provided, since the rescaling
of ðρ̄0j is forbidden by the trace preservation; for this
reason, the coefficient in front of jρ0δÞ in the above linear
superposition is always fixed at the constant unit value,
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FIG. 3. Hysteretic behavior of the cavity occupation number n
[(c),(d)] under sweeping the detuning parameter δ through the
critical region in a stepwise manner or using a linear ramp with
the same inclination [(a),(b)]. The duration of steps used in the
former protocol is always the same, tc ¼ 10=κ [see also the
dashed line in Fig. 2(a)]. [Filled circles (triangles)] Values of n
calculated at multiples of tc at which δ abruptly changes for a
forward (backward) sweep. (Blue lines) Corresponding numeri-
cal results for the linear ramp with arrows indicating the sweep
direction. The number of steps used in the calculations for the
forward and backward sweep was taken to be N ¼ 11 [(a),(c)]
and N ¼ 51 [(b),(d)]. The values of κ, U, and F are the same as
those used in Fig. 2.
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which reflects the fundamental impossibility to acquire
any geometric effects as well as hysteretic phenomena
in unique steady state [18]. The gauge invariance of
observables dictates the accompanying gauge transforma-
tion law χ�δ → ð1=g1;δÞχ�δ , which renders the ratio χ−δ =χ

þ
δ

manifestly gauge invariant.
It is more transparent to discuss the properties of χ�δ in

the continuum limit. Keeping tc fixed, we reduce the
discrete step Δδ, and therefore we need to perform more
steps to reach the value δmax. Since the width of the critical
area (δmax − δmin) is also fixed, the increment of N means
diminishing of a ramp velocity v¼Δδ=tc ¼ðδmax−δminÞ=
ðNtcÞ. We notice that at sufficiently large N ∼ 50 the
difference between the staircase and the straightly linear
[blue line in Figs. 3(a) and 3(b)] protocols begins to
disappear: The deviation of circles and triangles collected
during the staircase ramp from the continuous blue curve,
which is obtained by a brute-force numerical integration of
the time-dependent master equation with the linear ramp in
the spirit of Ref. [35], becomes smaller and smaller with
increasing value of N [compare Figs. 3(c) and 3(d)].
An effective geometric description of the continuum

limit Δδ → 0 in our system featuring the driven DPT is
achieved in terms of the ordinary differential equations for
the gauge-invariant quantities y�ðδÞ ¼ χ�ðδÞ=A10ðδÞ (see
Supplemental Material [43] for details)

d
dδ

y�ðδÞ ¼ −1 −
�
fðδÞ � γ1ðδÞ

v

�
y�ðδÞ; ð1Þ

expressed in terms of the gauge-invariant function fðδÞ ¼
A11ðδÞ þ ðd=dδÞ lnA10ðδÞ [see Fig. 4(a)] and equipped
with initial conditions yþðδminÞ ¼ y−ðδmaxÞ ¼ 0. Note that
all details about the driving protocol are now hidden in a
value of the ramp velocity v, which acquires the meaning
of a global characteristic in this limit being defined as
v ¼ ðδmax − δminÞ=ðNtcÞ. This indicates that all results of
Eq. (1) remain robust to any experimental imperfections of
a driving protocol.
The Sarandy-Lidar connections Aq0qðδÞ ¼ ðρ̄q0 ðδÞjd=

dδjρqðδÞÞ entering this equation are the geometric objects
obtained from a solution of the instantaneous Liouvillian
eigenvalue problem, in close analogy to the derivation of
the Berry connection. It should be stressed that Aq0qðδÞ can
be unambiguously extracted from measurements by per-
forming the forward and backward sweeping; see
Supplemental Material [43] for details. The term ∝ v−1

in Eq. (1) is the open system analog of the dynamical phase
in closed systems. The sign difference in this equation
determines the hysteresis effect in the continuum limit:
Experimentally, the best candidate to probe geometric
effects in open systems is a hysteresis area A ¼R δmax
δmin

dδ½χ−ðδÞ − χþðδÞ� (here expressed in the observable

gauge fixed by the condition tr½Ôρ1δ� ¼ 1) for the expect-
ation value of an observable Ô obtained under a cyclic

variation of control parameters; see the insets in Fig. 4(b)
for typical results.
Equation (1) can be cast to the matrix form [43] revealing

the non-Abelian character of this open system geometric
effect. For this reason, it is impossible to fully separate
geometric and dynamical contributions to χ�. We also note
that the non-Abelian description provided here is substan-
tially different from the one considered in Refs. [16,17],
because in our case there is no degeneracy between λ0 ¼ 0
and λ1 ¼ −iγ1 Liouvillian eigenvalues. The absence of
degeneracy prevents a cancellation of contributions to the
hysteresis area accumulated in the forward and backward
integration directions. This essential property, together with
the relaxation rate’s separation near the DPT, allows us to
introduce the effective geometric description of the open
system metastable dynamics even in the one-dimensional
parameter space—the property, which is absent in a geo-
metric description of closed adiabatic dynamics.
Yet another advantage of the description in terms of

Eq. (1) is a numerically cheap study of slow and ultraslow
ramps, for which a brute-force numerical study becomes
very expensive. One just needs to store the values of A10ðδÞ
and A11ðδÞ in some (e.g., observable) gauge shown in
Fig. 4(a) (with Ô ¼ b†b) along with the gauge-independent
function γ1ðδÞ shown in Fig. 2(a), and solve the ordinary
differential equations (1) with arbitrary small values of v.
Thereby it is easy to obtain the scaling behavior of the
hysteresis areas covering a range of sweep velocities v
within many orders of magnitude [see Fig. 4(b)].
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FIG. 4. (a) Sarandy-Lidar geometrical connection A10ðδÞ in the
gauge tr½b†bρ1ðδÞ� ¼ 1 and the gauge-invariant function fðδÞ.
(b) Hysteretic areaA (solid line) as a function of v−1. (Insets) The
cavity occupation number n of the metastable states for the
staircase protocol [see Figs. 3(a) and 3(b)] with the number of
steps N ≈ 1.4 × 103 (left inset) and N ≈ 1.2 × 105 (right inset) in
either direction. (Dashed line) Quasiadiabatic approximation for
A ∝ v becomes valid only for extremely slow sweeping veloc-
ities (gray region).
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Remarkably, the quantities defining χ�ðδÞ can be extracted
from a realistic experiment. To this end, one needs to
perform measurements at three different values of v in the
forward and backward directions: This suffices to find
γ1ðδÞ, A10ðδÞ, and fðδÞ inside the critical region (see
Supplemental Material [43]).
At ultraslow v [for the parameters of Fig. 4(b), this

corresponds to N ∼ 106], the dynamical term in Eq. (1)
dominates, allowing us to find the asymptotic formula
χ�ðδÞ ¼∓ vA10ðδÞ=γ1ðδÞ þOðv2Þ. Thereby we recover
the quasiadiabatic phase of Landsberg [44] and Ning
and Haken [45], which is also known from two-parameter
pumping problems [18,21]. This formula suggests that the
scaling of the hysteresis areas is asymptotically linear at
small v (cf. [35]; see also [46]). We also find the universal
relation χ−ðδÞ=χþðδÞ ¼ −1 in this regime.
In summary, we provided the geometric description of

the metastable dynamics of the open quantum system close
to DPT and proposed the way to determine the components
of the Berry-like (Sarandy-Lidar) connections necessary for
this purpose in a real experiment. Experimentally, our
general approach can be implemented in modern hybrid
quantum systems [47,48] based on various physical real-
izations, such as qubits, mesoscopic spin ensembles, and
quantum metamaterials disposed on a single chip or in
Rydberg systems [49].
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