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Bifurcation analysis of optically induced
dynamics in nematic liquid crystals: circular

polarization at normal incidence
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We present a detailed bifurcation analysis of the nonlinear reorientation dynamics of a homeotropically aligned
nematic liquid-crystal film excited by a circularly polarized beam at normal incidence with the light intensity
as the control parameter. The secondary bifurcation above the optical Fréedericksz transition threshold is
identified as a supercritical Hopf bifurcation leading to quasi-periodicity, and the subsequent discontinuous
transition from quasi-periodicity to periodicity at higher intensity is identified as a homoclinic bifurcation. The
bifurcation scenario is compared with the one obtained in the case of an ordinary light wave at small oblique
incidence. Despite an analogous sequence of transitions, there are substantial differences. © 2005 Optical So-
ciety of America
OCIS codes: 190.0190, 160.3710.
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. INTRODUCTION
ver the past two decades the effects associated with the
ropagation of laser light in a liquid crystal (LC) have
een studied intensively.1–4 The long-range orientational
rder of the molecules in these media adds a collective
haracter to the light–matter interaction and generates a
nique spatiotemporal feedback mechanism responsible
or the rich dynamics of the optically induced orienta-
ional phenomena reported thus far.5–11 A further attrac-
ive feature of these systems is that a rigorous theoretical
ramework [at least for nematic liquid crystals12 (NLCs)]
s available, involving Maxwell’s equations together with
he hydrodynamic equations of the LC. The description
nvolves primarily the dynamics of the director n, a unit
ector that designates the local axis of average orienta-
ion of the molecules.

Among the different light–LC interaction geometries,
he case of a circularly polarized beam impinging nor-
ally on a homeotropic NLC film (i.e., the molecules are

erpendicular to the cell substrates) has received much
ttention ever since the discovery of the optical Fréeder-
cksz transition (OFT) by Zolot’ko et al. in 1981.13 In 1986,
antamato et al.14 realized that the changes in the polar-

zation of light, as it passes through the reoriented opti-
ally anisotropic NLC, are associated with spin-angular-
omentum transfer from light to matter. In that case, a

ollective rotation of the NLC molecules was observed
hat allowed the experimental identification of the OFT
s a subcritical Hopf bifurcation. The theoretical descrip-
ion of this bifurcation was done by Zolot’ko et al. in
990,15 pointing out the importance of nonadiabatic LC
istortions related to twist deformations of the director.
0740-3224/05/081671-10/$15.00 © 2
arrucci et al.,16 in 1992, extended investigations to high
xcitation intensities and high reorientation amplitude.
hey observed an unexpected discontinuous transition
ith large hysteresis from a precession regime with small

eorientation amplitude to one with large reorientation.
ome years later, a qualitative mechanism based on non-
niform spin-angular-momentum deposition from the

ight to the NLC was introduced to explain the origin of
uch a transition.17 More recently, some of the present au-
hors identified an additional continuous secondary insta-
ility between the OFT and the abrupt transition,18 and a
reliminary description of the bifurcation scenario in the
imit of the infinite-plane-wave approximation was re-
orted in Ref. 19; however, neither the exact description
f uniform precession (UP) limit cycles nor the determi-
ation of the unstable limit cycles was possible with this
odel, and thus the capture of all the finer details of the

ynamics was not possible. Finally, experimental investi-
ations have recently been devoted to identify the role of a
nite beam size, which has been shown in realistic situa-
ions to play an important role in the reorientation
ynamics.20 Despite these cumulative advances, it is fair
o say that a complete theoretical formulation is still lack-
ng.

Although it is clear that a full understanding of the ex-
erimental observations of the light-induced reorienta-
ion dynamics of NLC films must take into account the fi-
ite size of the incident beam, progress may be achieved if
ne sets out to establish firmly the exact nature of the bi-
urcation scenario in the infinite-plane-wave situation.
he resulting calculations can then serve as a guide for

urther improvements toward a description of the finite
005 Optical Society of America
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eam case. To obtain such standard results is the main
urpose of our contribution. Alternatively, our theoretical
esults may invite new experimental studies with a wider
ange of beam aspect ratios. Besides the infinite-plane-
ave idealization, the only relevant approximation is the
eglect of dynamical flow in the LC. On the numerical
ide, we use a reorientation modal expansion whose accu-
acy and convergence properties are easily controlled by
he number of modes included in the calculation.

In this paper we present the detailed analysis of the bi-
urcation scenario in the case of a circularly polarized ex-
itation at normal incidence by describing the director
ith the usual spherical angles �� ,��. This allows the ex-
ct determination of all the UP states (stable and un-
table). It is shown that the secondary instability above
he optical Fréedericksz transition threshold is a super-
ritical Hopf bifurcation. As a result of this bifurcation, a
uasi-periodic dynamics is generated in which the motion
f the director is a combination of precession and nutation
ith distinct fundamental frequencies. Moreover, the fol-

owing discontinuous transition from the quasi-periodic
egime to a UP regime is identified as a homoclinic
ifurcation.21–23 These results are compared with experi-
ents with the help of a pair of observables that allows

ne to distinguish nutation from precession. Finally, the
resent situation of a circularly polarized excitation at
ormal incidence is compared with the case of an ordinary

ight wave at small oblique incidence, which also pos-
esses an analogous sequence of a secondary Hopf bifur-
ation followed by a homoclinic bifurcation.

The paper is organized as follows. Section 2 presents
he theoretical bifurcation scenario and its comparison
ith experiment. In Section 3, the linear stability analy-

is of the UP states is performed, and the nature of the
uccessive bifurcations is identified and discussed. Fi-
ally, our conclusions and perspectives are summarized in
ection 4.

. DYNAMICAL SCENARIO
. Theoretical Model
e choose a Cartesian coordinate system �x ,y ,z� with the
axis along the direction of the wave vector k of light

Fig. 1(a)]. The calculations are developed in the infinite-
lane-wave approximation, justified if the spot size of the
xcitation beam is significantly larger than the thickness

ig. 1. (a) Interaction geometry in the Cartesian coordinate sys-
em �x ,y ,z�, where k is the wave vector of the circularly polarized
xcitation light, NLC is the nematic liquid-crystal film, and L is
he cell thickness. (b) Representation of the director n
�sin � cos � ,sin � sin � , cos �� in terms of the standard spheri-
al angles � and �.
of the NLC film. Under this assumption, all the rel-
vant functions depend solely on the spatial coordinate z
nd the time t. In this case, the director representation
= �sin � cos � ,sin �sin � , cos �� [Fig. 1(b)], together
ith the homeotropic boundary conditions [��0, t�
��L , t�=0 and �z��0, t�=�z��L , t�=0], suggests the ex-
ansion of angles � and � in an appropriate set of or-
hogonal functions24:

��z,t� = �
n=1

�

�n�t�sin�n�z/L�, �1�

��z,t� = �0�t� + �
n=1

�

�n�t�
sin��n + 1��z/L�

sin��z/L�
. �2�

he mode �0�t� does not depend on z and describes the
ure rotation of the director around the z axis. The dy-
amical equations of motion for angles � and � are ob-
ained from the balance between the torques (elastic, elec-
romagnetic, and viscous) acting on the NLC. These
ndividual torques are calculated from the variational de-
ivatives of the elastic and the electromagnetic free-
nergy densities and the dissipation function density,
espectively.25 Equations (A1) in Appendix A correspond
o the situation in which the velocity field is neglected.
he equations for each amplitude �n and �n are then ob-

ained by projecting Eqs. (A1) on each mode to produce an
nfinite-dimensional integrodifferential problem [Eqs.
A7)]. The ensuing numerics are made tractable by a re-
uction to a finite-dimensional system by using a trun-
ated model expansion for the angles:
�1 ,… ,�N ;�0 ,�1 ,… ,�M�. Finally, the resulting set of

+M+1 time-dependent Eqs. (A7) is solved simulta-

ig. 2. (a) � /2� on a log scale versus � for ��2 and ��50�. (b)
/2� on a linear scale versus � for ��4 and ��3�. Solid

dashed) curves correspond to stable (unstable) solutions.
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eously with Eqs. (A4) governing the optical fields.
For the present calculations, we use the material pa-

ameters corresponding to the nematic E7 used in the ex-
eriments: The splay, twist, and bend elastic constants of
he NLC are taken to be K1=11.09�10−12 N, K2=5.82
10−12 N, K3=15.97�10−12 N; the refractive indices of

he extraordinary light and ordinary light are taken to be
E=1.746, no=1.52226; 	=532 nm (wavelength of the la-
er); and 
1 /K3=1010 s m−2,27 where 
1 is the rotational
iscosity. The thickness of the NLC film is taken to be L
100 �m. We also introduce for convenience a character-

stic time �NLC=
1L2 /�2K3 (typically, for L=100 �m,
NLC�10 s).

One notes that the coupled equations for both the di-
ector and the optical field [Eqs. (A1), (A4), and (A7)], to-
ether with the boundary conditions given by Eqs. (A8)
nd (A10), are explicitly invariant with respect to rota-
ions around the z axis, namely, to the change �→�
� as a consequence of isotropy in the �x ,y� plane. As a
esult, the equation for �0 is decoupled from the ones for
n and �n �n�1�. When these modes do not depend on t

d�n /dt=d�n /dt=0�, the angular velocity d�0 /dt has a
onstant value, and the director precesses uniformly
round the z axis (UP state) with a frequency f0 defined as

f0 =
1

2�
�d�0

dt
�

UP

. �3�

n this case, the problem is significantly simplified. In
act, instead of solving a system of evolution equations for

0�t�, �n�t�, and �n�t�, we are now faced with a set of non-
inear algebraic equations in �n and �n. After solving
hese equations numerically and substituting �n and �n
nto the equation that gives d�0�t� /dt, we can calculate
irectly the frequency f0 of the UP.
The preceding comment holds only for circularly polar-

zed light because for an elliptically polarized excitation
he rotational invariance is broken. This considerably en-
iches the dynamics.28–30

. Simulations
he incident light intensity I is taken as the control pa-
ameter, and we define �=I /IF

CP as the normalized inten-
ity, where IF

CP is the transition threshold for the OFT un-
er circular polarization excitation (see Appendix A for
he explicit expression). To elucidate the importance of
he different modes in the actual dynamical behavior, we

Table 1. Calculated Values of the Thresholds �2 an
the Modal Expans

Transition Threshold �2

N Mode
Mode 1 2 3 4 5

— — — — —
— — — — —

1.66 — 1.46 1.46 1.45
1.63 — 1.45 1.45 1.45
1.63 — 1.45 1.45 1.45
1.63 — 1.45 1.45 1.45
ave calculated the bifurcation scenario for different com-
inations of spatial mode expansion �N ,M�. We introduce
he phase delay ��t� defined as (see Appendix A)

��t� =
2�

	
	

0

L

�ne�z,t� − no�dz. �4�

his phase has an experimental counterpart in that the
uantity � /2� roughly represents the number of self-
iffraction rings in the far field.31 Also the UP states are
haracterized by a time-independent phase delay, �
const., whereas d� /dt�0 for nonuniform precession

NUP) states.
Increasing the number of modes leads to convergence of

he system’s behavior toward the one presented in Fig. 2
n which the phase delay � /2� is plotted versus the nor-

alized intensity �. The solid curves represent stable UP
tates, and the dashed curves correspond to unstable UP
tates (see Subsection 3.A for the linear stability analysis
f the UP states). The region in gray corresponds to a
UP regime �d� /dt�0� in which nutation is coupled to
recession. In this regime, the lower and the upper curves
hat define the region in gray correspond to the minimum
nd the maximum values taken by � during its oscilla-
ion. The threshold values for the continuous transition at
=�2, where nutation appears ��t��0�, and for the dis-
ontinuous transition at �=�3, where the system abruptly
ifurcates toward a large reorientation regime ��
1�, are
ummarized in Table 1 for different pairs �N ,M�. We can
ee that the values for �2 and �3 converge toward common
alues for large enough values of N and M; an empty en-
ry indicates that the bifurcation scenario for the corre-
ponding �N ,M� follows a different sequence of transi-
ions.

ersus the Number of Modes N and M Retained in
efined in the Text

Transition Threshold �3

N Mode
1 2 3 4 5 6

— — — — — —
— — — — — —

2.07 — 1.76 1.78 1.77 1.77
2.07 — 1.75 1.79 1.77 1.77
2.02 — 1.74 1.77 1.75 1.75
2.01 — 1.74 1.77 1.75 1.75

ig. 3. Experimental setup. Laser: Verdi laser (from Coherent)
perating at 532 nm; BS, beam splitter; 	 /4, quarter-wave plate;
, lens; d, diaphragm; PBS, polarizing beam splitter; Di,
hotodetectors.
d �3 v
ion D

6

—
—

1.45
1.45
1.45
1.45
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It appears to be enough to retain only a few modes for
he angles �� ,�� to describe accurately the sequence of
ifurcations. Because an absolute precision of 0.01 both
or �2 and for �3 is achieved when N ,M�6, we decided to
erform all further calculations appearing here with N
M=6.
By definition, the OFT occurs at �=1, where we observe

hat the system settles to a UP state with a small reori-
ntation amplitude (�
� or, equivalently, �2�1) labeled
P1 [Fig. 2(a)] (see Ref. 32 for details concerning the na-

ure of the OFT). When the intensity is decreased from
he UP1 regime, the system switches back to the unper-
urbed state at �=�1

* �0.88. When the intensity is in-
reased above the OFT threshold, the UP1 loses its sta-
ility at �=�2�1.45, where the NUP regime takes over.
ubsequently, the NUP loses stability at �=�3�1.75,
here the system abruptly switches to a UP with a large

eorientation amplitude (��1 or, equivalently, �2
1) la-
eled UP2. When the intensity is decreased in the UP2 re-
ime, the system switches back to the UP1 regime at �
�3

* �1.09. Figure 2(b) shows the entire UP1 regime: The
nstable branch makes a loop and connects with the other
nstable branch, UPS (S for saddle or separatrix; the la-
el will be justified in Section 3), which connects to the
P2 regime. Finally, for ���4�3.58, one is left with UP2

nly.

. Experiment
e used an experimental apparatus (Fig. 3) that gives si-
ultaneous access to the dynamical behavior related to

he polar ��� and the azimuthal ��� parts of the molecu-
ar configuration. This technique is described in more de-
ail in Ref. 20. It consists of a Verdi laser (from Coherent)
perating at 532 nm, whose polarization is made circular
y using a quarter-wave plate, focused on the NLC cell
ith a lens of focal length f=150 mm. The beam diameter

s 2w0=30 �m at the sample location, and the cell thick-
ess is L=75 �m. The director dynamics is retrieved by
he analysis of the central part of the emerging beam af-
er the diaphragm d. Photodiodes Dcenter, Dx, and Dy col-
ect, respectively, the total intensity of the central part of
he beam, Icenter, and the intensities, Ix and Iy, of the x and
electric field components �Icenter=Ix+Iy�. The incident in-

ensity Itot is monitored by the photodiode Dtot. The data-
cquisition frequency is 4 Hz. The behavior of the signal
center�t� is qualitatively similar to that of ��t�, whereas
he behavior of the signals ix�t��Ix /Icenter and iy�t�
I /I can be compared with the calculated intensi-

ig. 4. (a) Experimental Icenter����t (filled circles). The vertical
ars are the standard deviation of Icenter�t� for the corresponding
alue of �, and the solid curve is to guide the eye of the extrema
f Icenter�t�. (b) Calculated ���� ���3��.
y center
ies at the output of the sample, Ix�t�= �Ex�z=L , t��2 and
y�t�= �Ey�z=L , t��2, respectively. In that ix�t�=1− iy�t�,
hese time series possess the same dynamical informa-
ion, and we shall refer to any of these quantities as i�t�.

The reorientation amplitude as a function of the inci-
ent intensity is experimentally studied by observing
center�t�. Its time-averaged value Icenter�t is plotted in Fig.
(a) in which the average is performed over a time dura-
ion much longer than the precession period 1/ f0. The ver-
ical bars represent the standard deviation of Icenter�t� for
given �. We can conclude that an oscillation of the reori-

ntation amplitude of the director takes place above a
iven intensity �=�2, corresponding to the appearance of
he NUP regime. In Fig. 4(b), the calculated � is plotted
s a function of �. On the other hand, Fig. 5(a) displays
he experimental precession frequency f0 as a function of
. This frequency is deduced from the Fourier spectrum of
he time series i�t�, which exhibits a single frequency 2f0
n the UP1 regime. This double frequency arises because
he polarization ellipse at the output of the sample is in-
ariant under a rotation of � around the z axis. The tran-
ition UP1→NUP is associated with a sudden change of
lope of the precession frequency versus intensity, as pre-
icted by theory [see Fig. 5(b)]. This behavior can be ex-
lained as follows. In the NUP regime, the phase shift �
xplores values closer to 2� as � increases [see Fig. 4(b)]
nd the total angular-momentum transfer per photon to
he NLC, �1−cos ���, is correspondingly smaller.

A qualitative agreement between theory and experi-
ent is observed, although the onset of the NUP regime

ppears at a lower value �2�1.2 experimental versus �2
1.45 theoretical), and the precession rate accelerates as
increases from 1 to �2 [Fig. 5(a)], whereas a deceleration

s predicted by theory [Fig. 5(b)]. Such discrepancies may
e attributed to the finite size of the excitation beam, the
resent aspect ratio being =2w0 /L=0.4. For higher val-
es of , the deceleration behavior predicted by the

nfinite-plane-wave theory was in fact observed earlier16

or =2 and =3. However, for such large values of , the
ransition UP1→NUP was not observed. This is probably
ue to a nonefficient spatial averaging of the light-
ngular-momentum deposition in the plane �x ,y�, which
s driven by transverse effects. Moreover, �2 has been
emonstrated in another context (linearly polarized exci-
ation at normal incidence34) to be a critical value for the
spect ratio laser beam. This has led us to choose a
maller beam diameter.

In Section 3, we will relate the transitions UP1
NUP and NUP→UP2 to standard bifurcation sce-

arios. For this purpose, the linear stability analysis of

ig. 5. Precession frequency f0���. (a) Experiment (filled circles).
he solid curve is to guide the eye. (b) Theory.
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he UP states is first performed, followed by a study of the
ritical dynamical behavior in the neighborhood of the bi-
urcations. Finally, the present situation is compared with

closely related interaction geometry that possesses a
imilar sequence of bifurcations.

. BIFURCATION ANALYSIS
. Linear Stability Analysis of Uniform Precession
tates
he linear stability analysis of the UP states is performed
ccording to the following procedure. We first introduce
he vector x= ��1 ,… ,�N ,�1 ,… ,�M�, rewriting Eqs. (A7)
s ẋ=F�x� (the dot denoting the time derivative). The UP
tates xUP are then found as solutions of their defining
quation F�xUP�=0, and their stability is established by
alculating the eigenvalues of the corresponding Jacobian
atrix Jij= ��Fi /�xj�x=xUP

. For the analysis of the situation
epicted in Fig. 2(b) where � /2��1.4, it is sufficient to
onsider the eigenvalue with the largest real part, de-
oted 	max.
We find that the transition at �=�1

* is a saddle-node bi-
urcation. Moreover, the UP1 state represents a stable
ode (	max is real and negative) in the hysteretic region
ithin 0.886���0.911, changing to a stable focus at �
0.911, where 	max gives rise to a complex-conjugate pair
�	max�± iI�	max�, with R�	max��0 and I�	max��0. At �
�2, R�	max� crosses zero and becomes positive for larger
, indicating a Hopf bifurcation. This transition is super-
ritical as illustrated in Fig. 2. In Subsection 3.B, we shall
ee that a limit cycle is born at �2, which corresponds to
he appearance of a new frequency f1 leading to quasi-
eriodicity.

. Secondary Supercritical Hopf Bifurcation
ne analyzes the dynamical regime arising above the

ransition threshold �=�2 by studying the director trajec-
ory. This is illustrated in Fig. 6(a) in which the trajectory
n the plane �nx ,ny� is plotted for �=1.55 at z=L /2−� ��

0�. The reason for this somewhat arbitrary value of z is
o have contributions from all polar modes because, by
onstruction, the even modes �n sin�n�z /L� are zero at
he center of the cell �z=L /2�. The trajectory is not closed
n the laboratory frame, indicating quasi-periodicity of
he director, i.e., the presence of two incommensurate fre-
uencies f0 and f1. In fact, one can isolate the two inde-
endent motions, namely, the precession �f0� and the nu-
ation �f � by performing a transformation into a frame

ig. 6. Director trajectory at �=1.55. (a) Quasi-periodic behav-
or in the laboratory frame �nx ,ny�. (b) Periodic limit cycle in the
0-rotating frame �nx

rot ,ny
rot�.
1

hat rotates with frequency f0 around the z axis. The di-
ector components �nx

rot ,ny
rot� in this f0-rotating frame are

onnected with the components �nx ,ny� in the laboratory
rame by

nx
rot = ny sin�2�f0t� + nx cos�2�f0t�,

ny
rot = ny cos�2�f0t� − nx sin�2�f0t�. �5�

n the rotating frame, the director performs a simple pe-
iodic motion with frequency f1 as is seen in Fig. 6(b).

In the neighborhood of the bifurcation point, the scal-
ng properties of the amplitude A and the frequency f1 of
he limit cycle born at �2 serve to identify experimentally
he nature of the transition as a supercritical Hopf bifur-
ation. One thus expects to observe the scaling laws
���−A��2�=O��−�2�1/2 and f1���− f1��2�=O��−�2� in the
eighborhood of �=�2. For the purpose of analysis, we de-
ne theoretically the amplitude as Atheory=max�n��
min�n��, where �n��= �nx

2+ny
2�1/2 is the projection of n

nto the plane of the layer. The experimental observable
s chosen to be Aexp=SD�Icenter�, where SD(X) is the stan-
ard deviation of the time series X�t�. Clearly, Atheory and
exp can only be different from zero in the presence of nu-

ation. The results are shown in Fig. 7 in which Aexp is
lotted versus � (filled circles) and Atheory is shown in the
nset (solid curve). The experimental data are fitted by

exp���−Aexp��2�=O��−�2�
 by using the four points in
he range 1.2���1.4 and taking Aexp��2� as the averaged
alue of Aexp for ��1.2. We find 
=0.46±0.08 (dashed
urve) and �2=1.208±0.001. A similar fit to the theoreti-
al values leads to 
=1/2 (dashed curve in the inset of
ig. 7). One recalls that the limits of the applicability of

he scaling laws around the bifurcation point is restricted
o intensity values that are not too far above �2. This al-
ows us to understand the deviation of both the theoreti-
al calculations and the experimental data from the
quare-root behavior. As to the frequency f1, the linear
caling law is also well verified experimentally as shown
n Fig. 8 in which the dashed lines are linear fits per-
ormed near the transition threshold (only the first three
xperimental points were retained).

In the NUP regime, above �2, all modes �n and �n with
�1 are time dependent, and the Fourier spectrum of

ig. 7. Scaling law for the amplitude A of the limit cycle born at
he transition UP1→NUP. Experimental data (filled circles) fit-
ed by ��−�2�
 near �2, whose best fit gives 
=0.46±0.08. Inset:
heory (solid curve) by which the best fit (dashed curve) near �2
ives 
=1/2.
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heir oscillating part contains frequencies mf1, where m is
n integer. The spectra �S� of the phase delay �, the di-
ector components nx,y, and the output intensities Ix,y
ave peaks at frequencies given by simple formulas, in
greement with preceding experimental and theoretical
esearch reported independently in Refs. 20 and 35:

S��� = �mf1�,

S�nx,y� = �f0,mf1 ± f0�,

S�Ix,y� = �2f0,mf1 ± 2f0�. �6�

he nature of the spectra obviously depends on the inci-
ent intensity. The spectral analysis of both the experi-
ental and the corresponding theoretical results reveals

hat the relative weight of the higher harmonics increase
ith � and that the amplitude of a given harmonic decays

apidly with increasing m.
As � approaches �3, the NUP limit cycle eventually col-

ides with the unstable UPS branch, the UP2 regime be-
ng the final state (see Fig. 2). The situation is summa-
ized in Fig. 9, which shows the nutation motion in the
econstructed phase space X�t+�d� versus X�t�, where X
Icenter/� and �d is a time delay, for the UP1, NUP, and
P2 regimes. In the reconstructed space, the UP states
re represented by a fixed point (Icenter is constant),
hereas a NUP state is represented by a limit cycle. We

dentify next the transition NUP→UP2 as a homoclinic
ifurcation.

. Homoclinic Bifurcation
he stability analysis of the UPS branch reveals that the
elevant eigenvalue 	max, which belongs to the UPS
ranch at �=�3, is real and positive. Moreover, starting
ear the UPS solution, the final state can be either a NUP

imit cycle or a UP2 limit cycle, depending on the chosen
nitial conditions. In fact, the unstable UPS branch repre-
ents the saddle separatrix that divides the regions of at-
raction of the NUP state (or, below �2, the UP1 state)
rom that of the largely reoriented UP2 state. When the
UP limit circle approaches the UPS branch, the nuta-

ion period 1/ f1 correspondingly increases (Fig. 8). More
recisely, this period appears to diverge logarithmically at
�1.75, as shown in Fig. 10. Indeed, with a parameter-

ig. 8. Scaling law for the frequency of the limit cycle born
hrough the transition UP1→NUP. Experiment (filled circles)
ith linear fit near the bifurcation threshold (dashed line). Inset:

heory (solid curve) with linear fit near �2 (dashed line).
3

zation of the divergence with the function a+b ln��3−��,
erfect agreement (solid curve) with the calculated values
filled circles) is obtained for a�1.249 and b�−0.612.
his particular nature of the singularity at �=�3 guaran-

ees that the discontinuous transition NUP→UP2 (see
ig. 2) has the character of a homoclinic bifurcation.21–23

n fact, we deal here with a homoclinic bifurcation of the
implest type in which a limit cycle collides with a saddle
oint having only one unstable direction (all the eigenval-
es have a negative real part except one, which is real
nd positive). The present identification confirms and ex-
ends a preliminary account35 of this bifurcation.

As � approaches the homoclinic bifurcation point, the
rajectory of the director approaches the unstable UPS or-
it for longer and longer intervals. This is demonstrated
n Fig. 11 where the director trajectory is plotted in the
lanes �nx ,ny� and �nx

rot ,ny
rot� for � close to �3. In the

0�NUP�-rotating frame, the UPS branch is still a circle
Fig. 11(b)] because, for a given � below �3, f0�NUP� is ap-
roaching f0�UPS� from above [see Fig. 5(b)]. The system
volves near the unstable UPS limit cycle, represented by
he dashed curve (see Figs. 2 and 11). The dynamics near
3 possesses two time scales, a slow one and a fast one, as
xpected from the homoclinic nature of the transition.
igure 12 emphasizes this point, in which the phase shift
�t� and the instantaneous angular velocity ��t�
d�0 /dt are plotted versus time. When ��2�, the angu-

ar velocity has some constant value, more than 1 order of
agnitude smaller than the value reached when ���.
ecalling that the total angular momentum transferred

o the NLC by a photon is �1−cos ���, one can interpret
he slow regime as a situation in which there is almost no
et angular-momentum transfer, whereas the fast regime
orresponds to quasi-optimal angular-momentum trans-
er.

At �=�3 the system jumps to a new state of UP of the
irector (UP2) with a large reorientation ���74° � and
low precession rate. As displayed in Fig. 2, starting from

ig. 9. Reconstructed experimental nutation phase space X�t
�d� versus X�t�, where X=Icenter/� and �d is a time delay. Light
ray dots, the UP1 state between the OFT and the secondary
opf instability ��
�1+�2� /2�; black dots, the NUP state be-

ween the Hopf and the homoclinic bifurcation ��
��2+�3� /2�;
nd dark gray dots, the UP2 state just above the homoclinic bi-
urcation at �=� . The time delay is � =6s.
3 d
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he stable UP2 branch above �3 and lowering the excita-
ion intensity, one finds a large and rather complicated
ysteretic cycle, which eventually flips back to the UP1
olution at �3

* =1.09. This part of the UP2 branch consists
f alternatively stable and unstable regions exhibiting a
eries of saddle-node bifurcations. This result was already
btained in the framework of an approximate model15;
owever, experimental evidence of such multistability has
et to be observed.

. Discussion
ne can make an instructive comparison of our results
ith those of another well-studied geometry, namely, that
f a light wave with ordinary linear polarization at ob-
ique incidence (OLPO) (typically, 2°–8°). The dynamics is
uite rich in this case, too, and, although the symmetries
f the two systems are different, one has an analogous se-
uence of transitions, namely, an OFT, then a secondary,
upercritical Hopf bifurcation, followed by a homoclinic
ifurcation (see Refs. 6–8 for a theoretical description and
ef. 36 for a recent experimental study). In both cases,

he competition between symmetric and asymmetric re-
rientation modes has been demonstrated to be at the ori-
in of the secondary instability.18,37

In the OLPO geometry, one has in the unperturbed
tate one reflection symmetry, which in the OFT is broken
pontaneously, yielding two equivalent fixed points that
ubsequently undergo the Hopf bifurcation. The resulting
imit cycles are characterized by a single frequency. In the
ircular polarization (CP) case, on the other hand, one has
t outset isotropy but no reflection symmetry (chirality is
roken). The spontaneous breaking of this symmetry in
he OFT yields the uniformly precessing UP1 state. Be-
ause this state is periodic in time (frequency f0), the sub-
equent Hopf bifurcation yields a quasi-periodic state
haracterized by the two frequencies f0 and f1. From the
ymmetry properties, it follows that there are no higher
armonics in f0 or, equivalently, in the frame rotating uni-
ormly with frequency f0 the system performs a simple
imit cycle with frequency f1.

When approaching the homoclinic bifurcation, the peri-
dic or quasi-periodic orbits collide with saddles, which
re of quite different character in the two systems. In the
LPO case it is the unperturbed state n= �0,0,1�, which

s here an unstable fixed point. Clearly then, the ho-

ig. 10. Characterization of the homoclinic bifurcation f1
−1���

O�ln��3−��� near �3. The solid curve is the best fit to the theo-
etically calculated values (filled circles).
oclinic bifurcation can mediate gluing of the two
ymmetry-equivalent orbits. In the CP geometry the
addle corresponds to an unstable periodic state (UPS)
hat lies outside the quasi-periodic orbit and mediates a
iscontinuous transition to a largely distorted state.
A further (experimental) difference is that it is more

ifficult to observe the homoclinic trajectory in the CP
han in the OLPO case. The presence of unavoidable ori-
ntational fluctuations that initiate the irreversible tran-
ition NUP→ UP2 [see Fig. 2(a)] make long-time observa-
ion of this regime in the CP case difficult.

Finally we should mention that in an experimental set-
ing, the incident beam is often tightly focused, giving rise
o an angular spread ��=	 /�w0 �w0=beam waist� that
ay not always be negligible. Under the present experi-
ental conditions, we estimate that ���0.6°, which

afely rules out substantial effects due to nonzero angle of
ncidence.

. CONCLUSION
n this paper we have studied the reorientation dynamics
f a homeotropically aligned nematic liquid-crystal film
xcited by circularly polarized light at normal incidence.
ur theoretical model for the director’s dynamics has al-

owed a complete determination of the bifurcation sce-
ario. Our main results can be summarized as follows.
First, we have shown that the secondary instability

bove the primary optical Fréedericksz transition thresh-
ld is a supercritical Hopf bifurcation. As a result of this
ifurcation, a quasi-periodic dynamics is generated in
hich the motion of the director is a combination of pre-

ession and nutation with distinct fundamental frequen-
ies. Second, the discontinuous transition from the quasi-
eriodic regime to a uniform precession regime has been
dentified as a homoclinic bifurcation. When possible, the
heoretical predictions have been validated experimen-
ally with the help of a pair of observables distinguishing
utation from precession. Third, it would appear that an

nterpretation of the behavior of the light-induced dynam-
cs based on the transfer of the angular momentum of the
ight to the LC is a useful guide to extract the underlying
hysical mechanisms. Finally, we have discussed the
nalogies and the differences between the present inter-
ction geometry and the case in which the excitation light
s an ordinary wave illuminating the LC film at small ob-
ique incidence.

ig. 11. Homoclinic trajectory in (a) the laboratory frame
nx ,ny� and (b) the f0-rotating frame �nx

rot ,ny
rot� just below �

� ��=1.748542389055�.
3
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As mentioned in Section 1, improvements to the theory
hould involve a generalization to a finite beam size and
he inclusion of the flow field excited by the motion of the
irector. Whereas the latter effect has been taken into ac-
ount in the description of electric- and magnetic-field-
riven instabilities (backflow38), it has apparently never
een considered, until quite recently, in the context of
ight-driven dynamical phenomena. The first exploratory
ackflow calculations indicate that, in the system consid-
red here, nothing dramatic happens and only small
hifts of the positions of the various transitions arise.39 A
urther refinement could also be the inclusion of the lat-
ral spatial degrees of freedom, as first performed in the
ontext of the oblique-incidence instability.40 To approach
uch a situation experimentally, one needs, however, a
arge-aspect-ratio laser beam. This can probably be
chieved, without increasing the power output of the la-
er, by using an appropriate dye-doped LC mixture that is
nown to reduce the Fréedericksz threshold.41

Finally, one could consider what happens to the dynam-
cs when the system is no longer invariant under rotation
bout the z axis. This situation can be realized by using
n elliptically polarized excitation light beam instead of a
ircular one. The studies on this geometry are few and far
part, and the pioneering (theoretical and experimental)
ontributions can be found in Refs. 28 and 29. Important
ifferences have been observed already, but nothing
quivalent to the secondary instability found in the circu-
ar case has been reported yet. With the present theoret-
cal and experimental tools, we have decided to investi-
ate the situation further to understand the consequences
f breaking the initial rotational invariance by using an
lliptically polarized excitation. Our findings will be pre-
ented in a companion paper30 in which, among other
hings, we will demonstrate the existence of unpredicted
ynamical regimes.

ig. 12. Calculated dynamics just below �=�3 ��
1.748542389055�. (a) Phase shift ��t�. (b) Instantaneous angu-

ar velocity ��t�=d�0 /dt.
PPENDIX A
n this appendix the equations of motion of the angles �
nd � that describe the director and those governing the
ropagation of the light in the reoriented NLC are given.
For convenience, let us introduce the following normal-

zed quantities. First, we define the normalized elastic
onstants k1=K1 /K3 and k2=K2 /K3, where K1, K2, and K3
re, respectively, the splay, twist, and bend elastic con-
tants of the NLC.12 Second, the length and time are nor-
alized according to �=z /L and �= t /�NLC, respectively,
here L is the cell thickness and �NLC=
1L2 /�2K3 is a

haracteristic reorientation time, with 
1 as the rota-
ional viscosity.12 Finally �=I /IF

CP is defined as the nor-
alized incident intensity, with IF

CP=2�2c��K3 /L2�a
��� as

he threshold intensity (watts per inverse square meter)
or the OFT under circularly polarized excitation, where
����� is the dielectric permittivity perpendicular (paral-
el) to n and �a=��−�� is the corresponding anisotropy.

The equations for ��� ,�� and ��� ,�� are obtained from
he equations of motion of the director n, which include
he elastic, electromagnetic, and viscous torques,25

��

��
= �1 − �1 − k1�sin2 ��

1

�2

�2�

��2 −
sin 2�

2 ��1 − k1�

�� 1

�

��

��
�2

+ �1 − 2�1 − k2�sin2 ��� 1

�

��

��
�2

− 2�
ne

4

no
4 �Ae�2� ,

��

��
=

1

�2 sin2 �

�

��
��1 − �1 − k2�sin2 ��sin2 �

��

��
�

+ �
ne

2

no
2 �AeAo

*exp�i���,��� + c . c . �. �A1�

n these equations, the amplitudes Ao, Ae are expressed
s functions of the amplitudes of the ordinary �Eo� and ex-
raordinary �Ee

�� electric fields in the �x ,y� plane as

Eo��,�� = Ao��,��exp�i�0no��,

Ee
���,�� = Ae��,��exp�i�0	

0

�

ne���,��d��� , �A2�

here �0=2�L /	 is the normalized wave vector of the
ight beam and

ne��,�� =
nonE

�nE
2 cos2 � + no

2 sin2 ��1/2
, �A3�

ith no=��
1/2 and nE=��

1/2, respectively, as the eigenordi-
ary and eigenextraordinary refractive indices. Under the
eometric-optics approximation ��0�1�, the equations
overning the propagation of the ordinary and extraordi-
ary waves are written as
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�Ao

��
= −

��

��

nc

no
exp�i���,���Ae,

�Ae

��
= −

1

2ne

�ne

��
Ae +

��

��

no

ne
exp�− i���,���Ao, �A4�

here ��� ,�� corresponds to the total phase shift between
he e and o waves at the location � and time � if the light
ropagation would have been adiabatic through the reori-
nted NLC (i.e., the so-called Mauguin regime), namely,

���,�� = �0	
0

�

�ne���,�� − no�d��. �A5�

he total phase shift � defined by Eq. (4) is thus

���� = ��1,��. �A6�

Finally, the evolution equations for the amplitudes
n��� and �n��� are obtained by projecting Eqs. (A1) on

ach mode [Eqs. (1) and (2)], leading to a set of coupled
quations given by

d�n

d�
= 2	

0

1 ��

��
sin�n���d�,

d�n

d�
= 2	

0

1 ��

��
sin��n + 1����sin����d�. �A7�

quations (A7) are then solved simultaneously with those
or the optical fields [Eqs. (A4)] under appropriate bound-
ry conditions. For the angles � and �, the strong anchor-
ng conditions

��0,�� = ��1,�� = 0,

��

��
�0,�� =

��

��
�1,�� = 0 �A8�

re explicitly satisfied with the modal expansion [Eqs. (1)
nd (2)], leaving the choice of initial values for �n�0� and
n�0� (almost) arbitrary. In practice, one integrates away

in time) from the initial conditions and starts to record
he results as soon as the solutions have reached station-
rity.
For the electric field amplitudes, the boundary condi-

ions are given by the polarization of the incident excita-
ion light. Without loss of generality, we may choose the x
xis along the major axis of the polarization ellipse of the
ncident light. In this case the amplitudes Ao, Ae at �=0
normalized to the incident electric field amplitude) are
iven at time � by

�Ao�0,���2 = 1
2 �1 − cos�2��0,���cos 2��,

�Ae�0,���2 = 1
2 �1 + cos�2��0,���cos 2��,

Ae�0,��Ao�0,��* = − 1
2 �sin�2��0,���cos 2� + i sin 2��,

�A9�

here the ellipticity angle ��−� /4���� /4� is related to
he ratio between the minor �b� and the major �a� axes of
he polarization ellipse by tan �= ±b /a.42 The case �=0
�= ±� /4) corresponds to a linearly (circularly) polarized
xcitation beam, and intermediate values refer to ellipti-
al polarization. Because the sign of � determines the
andedness of the polarization and hence the sense of ro-
ation of the director around the z axis, it is sufficient to
onsider only positive values of �. In the case of a circu-
arly polarized light, the � (and thus the �) dependence
isappears from the boundary conditions (A9), which sim-
lify to

�Ae�0,���2 = �Ao�0,���2 = 1
2 ,

Ae�0,��Ao�0,��* = −
i

2
. �A10�
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