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We present a detailed bifurcation analysis of the nonlinear reorientation dynamics of a homeotropically aligned
nematic liquid-crystal film excited by an elliptically polarized beam at normal incidence with the intensity and
the polarization state of light as the control parameters. The asymmetry arising from the elliptical polarization
of the excitation lightwave is shown to affect dramatically the dynamics, and various new dynamical behaviors
are reported: (i) quasi-periodic rotations for almost circular polarization; (ii) a discontinuous transition, iden-
tified as a homoclinic bifurcation, to a largely reoriented state over a large range of ellipticity values; (iii) os-
cillations associated with large reorientation; and (iv) optical multistability between several distinct dynamical

regimes. © 2005 Optical Society of America
OCIS codes: 190.0190, 160.3710.

1. INTRODUCTION

Over the past two decades the effects associated with the
propagation of laser light in a liquid crystal have been
studied intensively.'™ The long-range orientational order
of the molecules in these media adds a collective charac-
ter to the light-matter interaction and generates a
unique spatiotemporal feedback mechanism responsible
for the rich dynamics of the optically induced orienta-
tional phenomena reported thus far.>° A further attrac-
tive feature of these systems is that a rigorous theoretical
framework [at least for nematic liquid crystals11 (NLCs)]
is available, involving Maxwell’s equations together with
the hydrodynamic equations of the liquid crystal. The de-
scription involves primarily the dynamics of the director
n, a unit vector that designates the local axis of average
orientation of the molecules.

Several interaction geometries involving polarized light
and a homeotropic film of NLC (i.e., the molecules are per-
pendicular to the cell substrates) have received much at-
tention ever since the discovery of the optical Fréeder-
icksz transition (OFT) by Zolot’ko et al. 12 The system
exhibits complex nonlinear dynamics accessible both ex-
perimentally and theoretically. Some of the cases treated
are circular polarization (CP) excitation'®>” and elliptical
polarization (EP) excitation,ls’19 both at normal incidence;
ordinary linearly polarized light at small oblique
incidence®®2°2%; and excitation with an elliptical inten-
sity profile.?+%

The present paper is devoted to a detailed theoretical
analysis of the role played by the anisotropy of the exci-
tation during the reorientation dynamics in the EP case
[see Fig. 1(a)l. The complete bifurcation scenario is ob-
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tained as a function of the excitation intensity and the el-
lipticity of the incoming light (for not-too-small elliptici-
ties). In particular, it is shown that new dynamical
regimes, not present in previous studies,lg’19 are ex-
pected. We can mention the quasi-periodic rotation re-
gimes for almost CP; the discontinuous transition, identi-
fied as a homoclinic bifurcation,??® to a largely
reoriented state over a large range of ellipticity values; os-
cillations within this largely reoriented state; and optical
multistability between several distinct dynamical re-
gimes. Whenever possible, the theoretical results have
been supported by experimental observations.

For our purpose, we introduce the normalized intensity
p=I/1SF, where I is the excitation intensity and I%F is the
threshold intensity for the OFT under CP excitation (note
that in Ref. 19 the intensity threshold for linear polariza-
tion 15 =1%F/2 was used for the normalization). The ellip-
ticity angle y (-wm/4<y<m/4) is related to the ratio be-
tween the minor (b) and the major (a) axes of the
polarization ellipse by tan y=+b/a such that the incident
beam carries an average angular momentum 7 sin 2y per
photon. The case y=0 (y= +7/4) corresponds to a linearly
(circularly) polarized excitation beam, and intermediate
values refer to EP. Because the sign of y determines the
handedness of the polarization and hence the sense of ro-
tation of the director around the light wave vector, it is
sufficient to consider positive values of y only.

The paper is organized as follows. Section 2 summa-
rizes the theoretical and experimental background re-
lated to the present study. The theoretical bifurcation dia-
gram in the plane of parameters (x,p) is presented in
Section 3 in which the comparison with previous studies
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(a) (b)
Fig. 1. (a) Interaction geometry in the Cartesian coordinate sys-
tem (x,y,z), where k is the wave vector of the elliptically polar-
ized excitation light, NLC is the nematic liquid-crystal film, and
L is the cell thickness. (b) Representation of the director n
=(sin O cos @, sin O sin @, cos O) in terms of the standard spheri-
cal angles © and ®.

is made. In Section 4, the principal dynamical regimes are
studied separately, and the transitions between them are
discussed. Finally, our conclusions are summarized in
Section 5.

2. GENERAL BACKGROUND

A. Theory

We choose a Cartesian coordinate system (x,y,z) with the
z axis along the direction of the wave vector k of light
[Fig. 1(a)l. The calculations are developed in the infinite-
plane-wave approximation, justified if the spot size of the
excitation beam is significantly larger than the thickness
L of the NLC film. Under this assumption, all the rel-
evant functions depend solely on the spatial coordinate z
and time ¢. For convenience, we also introduce the nor-
malized spatial coordinate ¢ and time 7 according to ¢
=z/L and 7=t/ c, Wwhere L is the cell thickness and
o= v1L%/ mKs is a characteristic director reorientation
time, with y; as the rotational viscosity and K3 as the
bend elastic constant of the NLC.™ The director represen-
tation n=(sin O cos ®,sin O sin ®,cos O) [Fig. 1(b)] asso-
ciated with the homeotropic boundary conditions 6(0, 7)
=0(1,7)=0 and 9;2(0,7)=9,P(1, 7)=0 suggests the expan-
sion of angles O and ® in an appropriate set of orthogonal
functions®:

0(£7 = X, 0,(dsin(nmé), (1)
n=1
- in[(n + 1)7¢]
BED = Dol + D Dy ()

el sin(mé)

The mode ®y(7) does not depend on ¢ and describes the
pure rotation of the director around the z axis. In the ab-
sence of a velocity field, the dynamical equations for the
angles O(¢,7) and ®(£,7) are obtained from the balance
between the torques (elastic, electromagnetic, and vis-
cous) acting on the NLC. These individual torques are cal-
culated from the variational derivatives of the elastic and
the electromagnetic free-energy densities and the dissipa-
tion function density, respectively.30 The resulting coupled
equations can be written schematically as

00
— = Lo, (3)
ar
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P
= [ICI)(gyT)’ (4)

T

where the expressions of the operators Lg and L4 are ex-
plicitly given by Egs. (A1) in Ref. 31. The equations for
each amplitude O,(7) and ®,(7) are then obtained by pro-
jecting Eqgs. (3) and (4) onto each mode according to

do, 1
- = 2J Lo(§ 1sin(nmé)dé, (5)
dr 0

do, 1
d_ = ZJ Lo(é,7)sin[(n + 1) wé]sin(wé)dE. (6)
r

0

The resulting infinite-dimensional integrodifferential
problem is made tractable by truncation, leading to a
finite-dimensional system for the angles
(01,...,0N; P, Pq,...,Py). Finally, the resulting set of
N+M+1 time-dependent Egs. (5) and (6) is solved simul-
taneously with the equations governing the optical fields
[see Egs. (A4) in Ref. 31]. One retains a sufficient number
of modes (IN,M) to ensure approximation of the results
within a given tolerance.

One point to emphasize is that, in the EP case and in
contrast to the CP case, the equation for ®, is coupled
with the other equations. This is due to the broken rota-
tional invariance around the z axis. A regime of simple ro-
tation of the director (when d®,/d7=const. and d®,/dr
=dO,,/dr=0), possible in the CP case, cannot be realized
when y # 7/4. In the EP case, all modes (including ®,) are
either time dependent (d®,/d7#0, d®,/dr+0, dO,/dr
#0) or time independent (d®y/dr=d®,/d7=d6,/dr=0)
simultaneously.

We may introduce the vector x
=(04,...,05,P,...,DPy), rewriting Eqgs. (5) and (6) as x
=F(x) (the dot denotes the time derivative). It is clear
that when all modes are time independent the problem is
significantly simplified. In fact, instead of solving a sys-
tem of evolution equations for x, we are faced with a set of
nonlinear algebraic equations F(x)=0, which is done by a
Newton—Raphson method. Its solution xp(p) represents a
stationary distorted (D) state at some fixed value of p.
Then the neighboring D state for p+ p can be obtained by
solving F(x) =0 by using xp(p) as the initial guess. The op-
eration is then repeated to obtain the solution xp for any
p. Furthermore, one can easily perform the linear stabil-
ity analysis of the D state by calculating the eigenvalues
of the corresponding Jacobian matrix J;;=(dF;/ dx;)x-x, -

NLC
Bs #/4 L d Bs pBs
Laser N | T l
—— T )
DlOt Dcemer DX

Fig. 2. Experimental setup. Laser, Verdi laser (from Coherent)
operating at 532 nm; BS, beam splitter; /4, quarter-wave plate;
L, lens; d, diaphragm; PBS, polarizing beam splitter; D;,
photodetectors.
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Fig. 3. Phase diagram of the dynamical regimes in the plane of
parameter (y,p). U, undistorted state; D, stationary distorted
states; O, periodic oscillating states; PR, periodic rotating states;
QPR, quasi-periodic rotating states; LD and LO, large reorienta-
tion associated, respectively, with stationary distorted and oscil-
lating states. The dashed curves hpg, hyp, and kg correspond to
the hysteretic region of the PR, LD, and LO states, respectively.
The points are experimental data extracted from Ref. 19 for D
(squares), O (circles), PR (triangles), and hysteretic PR (inverse
triangles).
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In addition, we introduce the phase delay A(7) defined
as

1
A(T) = KOJ [ne(§7 T) - no]dgr (7)
0

where ky=27L/\ is the normalized wave vector of the
incident light with wavelength \. Here n.(¢,7)
=n ng/[nkcos? O(&, 1) +n? sin? O(£, 7]V is the extraordi-
nary refractive index with n, and nj as the eigenordinary
and eigenextraordinary refractive indices. A(7) corre-
sponds therefore to the total phase shift between the e
and o waves at the output (£=1) of the NLC cell if the
light propagation is considered adiabatic through the re-
oriented NLC (i.e., in the so-called Mauguin regime). This
phase has an experimental counterpart in that the quan-
tity A/27 roughly represents the number of self-
diffraction rings in the far field.>?

For the sake of consistency, the same material param-
eters as in a companion paper31 are used in the following
calculations.

B. Experiment

Our experimental apparatus (Fig. 2) gives simultaneous
access to the dynamical behavior of the polar (O) and the
azimuthal (®) parts of the molecular configuration. This
technique is described in Ref. 33. It consists of a Verdi la-
ser (from Coherent) operating at 532 nm, whose linear po-
larization is made elliptical by using a quarter-wave
plate. We adjust the ellipticity angle y by rotating the
quarter-wave plate and measuring the third normalized
Stokes parameter S3=sin 2y by using a polarimeter (not
shown in the figure). This beam is then focused on the
NLC cell with a lens of focal length /=150 mm.

Table 1. Calculated Sequence of Bifurcations as a Function of the Ellipticity yx of the Excitation Light®

Ellipticity Sequence of Transitions Bifurcation Nature
0.33<x<0.53 Unperturbed — distorted Pitchfork
Distorted — periodic oscillation Supercritical Hopf
Periodic oscillation — periodic rotation Gluing
Periodic rotation — periodic oscillation or distorted Homoclinic®
0.53<x<0.72 Unperturbed — distorted Pitchfork
Distorted — periodic oscillation Supercritical Hopf
Periodic oscillation — periodic rotation—1 Gluing
Periodic rotation—1— periodic rotation—2 Saddle node
Periodic rotation—2 — distorted Homoclinic*
0.72<y<m/4 Unperturbed — distorted Pitchfork
Distorted — periodic oscillation Supercritical Hopf
Periodic oscillation — periodic rotation—1 Gluing
Periodic rotation—1— periodic rotation—2 Saddle node
Periodic rotation—2 — quasi-periodic rotation Supercritical Hopf
Quasi-periodic rotation Homoclinic?
— distorted or periodic rotation
x=ml4 Unperturbed — periodic rotation Subcritical Hopf

Periodic rotation — quasi-periodic rotation
Quasi-periodic rotation — periodic rotation

Supercritical Hopf
Homoclinic?

“Sal a refers to the relative jump of the quantity a=A/27 experienced at the homoclinic bifurcation.

bSala<0.1.

“Sal @< 0.1 for x<0.66 and da/a~ 10 for x> 0.66.

450l a~10.
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Fig. 4. Calculated director trajectories in the (n,,n,) plane. (a) y=0.4: stationary distorted state (D) at p=0.72 (filled circles); periodic
oscillating state (O) at p=0.76 (curve 1); periodic rotating state (PR) just above the gluing bifurcation at p=0.83 (curve 2) and slightly
below the transtion to the largely reoriented oscillating state (LO) at p=0.97 (curve 3); largely reoriented oscillating state at p=0.98
(curve 4, see inset). (b) y=0.6: stationary distorted state (D) at p=0.8 (filled circles); periodic oscillating state (O) at p=0.91 (curve 1);
periodic rotating state PR, slightly above the gluing bifurcation at p=0.917 (curve 2); periodic rotating state PR, at p=0.95 (curve 3). (c)
x=0.74: stationary distorted state (D) at p=0.99 (filled circles); periodic oscillating state (O) at p=0.9925 (curve 1); periodic rotating state
PR, slightly above the gluing bifurcation at p=0.9932 (curve 2); periodic rotating state PR, slightly above the saddle-node bifurcation at
p=0.9936 (curve 3, dashed curve); quasi-periodic rotating state at p=1.5 (curve 4).

The beam diameter is 2wy=30 um at the sample loca-
tion, and the cell thickness is L=75 um. The director dy-
namics is retrieved by the analysis of the central part of
the emerging beam after the diaphragm d. Photodiodes
D enter> Dy, and D, collect, respectively, the total intensity
of the central part of the beam, I .ir, and the intensities,
I, and I, of the x and y electric field components (I epter
=I,+1,). The incident intensity Iy, is monitored by the
photodiode D,. The data-acquisition frequency is 4 Hz.
The behavior of the signal I .pi.(7) is qualitatively similar
to that of A(7), whereas the behavior of the signals i,(7)
=1/l enter and i,(7) =1/l cpier can be compared with the
calculated intensities at the output of the sample, I.(7)
=|E.(£&=1,7* and I/(7)=|E,(¢=1,7)? respectively. Be-
cause i,(7)=1-i,(7), these time series possess the same
dynamical information, and we shall refer to any of these
quantities as i(7).

3. BIFURCATION SCENARIO

In this section, the director dynamics is analyzed by tak-
ing p and x as control parameters. The results are pre-
sented for ellipticity values in the range 0.33< y< 7/4, for
which transitions between different dynamical regimes
are observed. For lower values of y the rotating states
(see below) do not exist, and some aspects of the scenario
in that region can be found in Refs. 18,19.

A. Phase Diagram of the Regimes and Bifurcations

Figure 3 presents the different regimes that exist in the
(x,p) plane for 0.33< y<u/4=0.785. Experimental data
points extracted from Ref. 19 are also indicated. Below
the OFT threshold that depends on y as I =I%"/(1
+cos 2 X),3O the director is unperturbed (U). Above the
threshold, several regimes can exist depending on the val-
ues of y and p: stationary distorted (D), oscillating (O), pe-
riodic rotating (PR), quasi-periodic rotating (QPR), and
largely reoriented states (O ~ 1), which may be stationary
distorted (LD), oscillating (LO), or rotating (LR) states
(LR states are not shown on Fig. 3 in that they arise only
in a narrow region Ay~ 10~2 near y=m/4, as discussed in
Subsection 4.E). Keeping the ellipticity fixed and increas-
ing the intensity, we see that these regimes appear as a
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Fig. 5. Experimental power spectra S(I pie:) @and S(@) in the pe-
riodic rotating regime for p=1.10 and (a), (b) y= /4 and (c¢), (d)
x=0.74.

well-defined sequence of transitions. In the range of inter-
est for y, several distinct bifurcation sequences can be
identified. These results are summarized in Table 1, and
the trajectories of the director in the various regimes are
shown in Fig. 4.3* In what follows, the dependence of the
detailed bifurcation scenario on the value of y is pre-
sented for increasing values of y.

For 0.33< x<0.53, the OFT is a pitchfork bifurcation,
and the reoriented state is a D state [see the filled circles
in Fig. 4(a)]. This state loses its stability through a super-
critical Hopf bifurcation to an O state [curve 1 in Figs.
4(a)] characterized by a single frequency f, (Table 2). The
reflection symmetry is spontaneously broken by the pri-
mary bifurcation, so, in the D and O states, one has two
symmetry-degenerate solutions related by {n,—-n,, n,
—-n,}. As p increases, these two limit cycles merge in a
gluing bifurcation at the origin and restore the reflection
symmetry. This leads to the appearance of a single
double-length limit cycle that corresponds to the trajec-
tory in the PR state [curve 2 in Fig. 4(a)l. A further in-
crease of the intensity eventually leads to a discontinuous
transition to a largely reoriented oscillating (y<0.45) or
stationary distorted (xy>0.45) state. In both cases this
transition is associated with a small relative jump Sa/« of



Krimer et al.

Table 2. Spectral Content of n, ,(7), I, ,(7), and A(7)
for the Different Dynamical Regimes for an
Elliptically Polarized Excitation

Regime Ty I, A
Periodic oscillation (O) nfo nfo nfy
Periodic rotation (PR) 2n-1)f, 2nfy 2nf,

Quasi-periodic rotation nfix(2m+1)f, nfix2mf, nfi£2mf,

(QPR)

the quantity a=A/27 (typically, da/a<0.1) and corre-
sponds to a homoclinic bifurcation (see Subsection 4.D).
In fact, stable LO states exist until the intensity is de-
creased to a critical value represented by the hysteretic
line A1 in Fig. 3, below which the LO state becomes sta-
tionary distorted. This LD state finally vanishes when the
intensity is decreased below the hysteretic line Ayp.

For 0.53<x<0.72, one has the sequence U—D—O0O
— PR as before [see Fig. 4(b)]; however, there is an addi-
tional bifurcation between PR states. In fact, the limit
cycle amplitude of the PR regime, now labeled PR; [curve
2 in Fig. 4(b)], abruptly increases. This results in another
periodic rotating regime labeled PR, with higher reorien-
tation amplitude [curve 3 in Fig. 4(b)]. This is a hysteric
transition connected to a double saddle-node structure
with the (unstable) saddle separating the PR; and PR,
branches, as already discussed in Ref. 19. In that case,
the system switches back to the O or D state at the line
labeled hpg in Fig. 3. In contrast, no hysteresis is ob-
served when p is decreased starting from the PR; regime
because the O — PR, transition is continuous. The PR,
— PR, transition is not shown in Fig. 3 because it is very
near to the gluing bifurcation. At y=0.53 the two saddle
nodes coalesce. Finally, for high intensity the system
abruptly switches from the PRy to the LD regime. The re-
orientation discontinuity associated with this transition
is small for y<0.66 (typically, da/@<0.1) and quite large
for x>0.66 (typically, Sa/a~ 10). As before, the transition
to large reorientation is found to be a homoclinic bifurca-
tion and, when the intensity is decreased, stable LD
states exist until the line A;p is reached.

For 0.72<y<mw/4 the sequence U—D-—-0O—PR;
— PR; is observed as before [see Fig. 4(c)]. However, for
higher values of p, a QPR regime is born through a sec-
ondary supercritical Hopf bifurcation, which introduces a
new frequency f; into the system and transforms the dy-
namics into a quasi-periodic behavior [curve 4 in Fig.
4(c)]. As the intensity increases, the QPR state undergoes
a homoclinic transition to a largely reoriented LD or LR
regime, which is, respectively, represented by a stationary
distorted or slowly rotating (close to y=m/4) state. This
bifurcation is associated with a large discontinuity of the
reorientation amplitude, namely, Sa/a~ 10.

As mentioned earlier, the particular case y=m/4, i.e.,
CP excitation, has been the subject of a separate study,
and we refer the interested reader to Ref. 31 for more de-
tails. In that case, one should note that the intensity
value on the hysteretic line A p at y=m/4 corresponds to
the intensity p; introduced in Ref. 31. A summary of the
results obtained there are presented at the end of Table 1.

The signature of the anisotropy of incident light is vis-
ible in the director trajectories in the (n,,n,) plane. The
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PR trajectories are obviously noncircularly symmetric for
x=0.4 and x=0.6 [see Figs. 4(a) and 4(b)], whereas the
PR, and QPR regimes are almost circularly symmetric
when the polarization is almost CP [see Fig. 4(c)]. In ad-
dition, one recalls that the dynamical regimes O, PR, and
QPR can be described by means of one (for O and PR re-
gimes) or two (for the QPR regime) frequencies, f; and f;.
The spectral content of the variables n,,, A, and I, is
listed in Table 2. In fact, a simple way of identifying a
given dynamical regime is to look at the spectra of the rel-
evant variables.

B. Comparison with Previous Studies

Our results may be compared with previous rigorous
and approximate'® calculations. In Ref. 18, the equations
of motion for the director were solved numerically,
whereas in Ref. 19 they were solved by using the same
mode expansion as we have used here [Eqgs. (1) and (2)]
but retaining only ©; and the modes ®; and ®; (inclusion
of additional twist modes ®,-5 were shown not to quali-
tatively alter the dynamics). In contrast to our calcula-
tions, however, their coupled-mode equations have been
solved approximately in the small distortion approxima-
tion. The QPR, LO, and LR regimes were not reported in
both these approaches, although other dynamical regimes
such as O and PR were obtained and observed
experimentally.!® Moreover, the homoclinic bifurcation
from the PR to the LO or LD regime and the one from the
QPR to the LD or LR regime was not found. Finally, we
can mention that the nonlinear twist terms [«(d,®)2]
were neglected in Ref. 19, suppressing the QPR regime,
although asymmetric azimuthal modes were taken into
account.

From an experimental point of view, the observation of
the QPR state has been reported in the particular case of
a CP excitation, and it has been ascribed to the competi-
tion from symmetric and asymmetric reorientation
modes.'® Concerning the O regime, it has been theoreti-
cally predicted to exist only below y=0.6 in Ref. 18,
whereas it was shown to exist over a significant range of p
in Ref. 19 until it vanishes at y=n/4. On the other hand,
the oscillating states have not been observed for an ellip-
ticity larger than y=0.5 (open circles in Fig. 3). This point
is easily understood with a look at Fig. 3 in which the re-
gion of existence of the O regime appears small for y

18

P, ()] B, (0.7)

0.0

070 072 074 076 0.78

X

Fig. 6. Calculated amplitude of the fundamental peak 2f; in
S(A) over the amplitude of the same peak at y=0.7 versus y for
p=1.10. The solid line is a linear fit.
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Fig. 7. Experimental power spectra (a) S(i) and (b) S(Z epter) In
the periodic rotating regime for p=1.10 and x=0.76.

>0.5. For lower values of y, the O regime exists for a sig-
nificant range of intensities, a range that increases as y is
further decreased in agreement with observations.

4. DYNAMICAL REGIMES

We will now discuss more specifically some of the
symmetry-breaking effects arising with the variation of
the polarization state of the incident light, and we will
present the corresponding experimental confirmation. In
what follows, the Fourier power spectrum of a variable
X(7) is denoted by S(X).

A. Periodic Rotating Regime

When the system is in the PR state, all the spectra of the
dynamical variables are described by a single frequency £y
(and, for y<w/4, by its harmonics as well). More pre-
cisely, we expect from theory that both spectra S(Z epter)
and S(i) exhibit harmonics 2nf, at xy=0.74, whereas a
single frequency 2f, should be present in S(i) at y=7/ 431
The experimental results are shown in Fig. 5 in which
S(Lgenter) and S(i) are plotted at p=1.10 with y= w/4 [Figs.
5(a) and 5(b)] and x=0.74 [Figs. 5(c) and 5(d)].

From Figs. 5(a) and 5(b) we see that the observations
agree almost perfectly with theory in the case of CP. How-
ever, a residual peak at the frequency 2f; can be distin-
guished in S(Z epnter). We believe this can be explained from
the nonperfect rotational invariance around the z axis in
the experiment. In fact, using a polarimeter we found that
the angle y satisfies 0.78 < y< /4, i.e., within 1% or bet-
ter accuracy of the ideal value 7/4. From Figs. 5(a) and
5(c) the ratio between the maximum peak values at 2f; in
S(Lgenter) for y=m/4 and y=0.74 is measured to be 0.047.
On the other hand, Fig. 6 presents the theoretical ratio
P%(X)/P% (0.7) as a function of y, where P2f0(x) is the
peak value at 2f; in S(A) at p=1.10 obtained by fitting
each peak profile by a Lorentzian function. Finally, from
Fig. 6, we find that the experimental ratio 0.047 corre-
sponds to a theoretical estimate of y=0.783, which is con-
sistent with the experimental uncertainty on y.

When the incident light is almost circularly polarized, a
satisfactory agreement is also observed as seen from Figs.
5(c) and 5(d) in which higher-order harmonics (2nf;,n
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=2) are observed in both S(Z pter) (n=2) and S() (n=2
and n=3). However, residual peaks at the harmonics n
=3 and n=5 can be distinguished in S(i) (the ratio be-
tween the maximum of two consecutive peaks is
P,_3/P,_o~1072 and P,_5/P,_4~ 5% 1072). The reason for
this is not clear at present. The exact nature of these
spectra obviously depends on y and p. As y approaches
/4, with p fixed, the calculations show that the relative
weight of higher-order harmonics goes to zero and that
the oscillation amplitude of A(7) goes also to zero (this
trend is shown in Fig. 6). In addition, the amplitude of the
harmonics decays quite rapidly with increasing n at fixed
(x,p), as illustrated in Fig. 5(d). These results help us un-
derstand why only the fundamental frequency 2f is ob-
served at y=0.76 and p=1.10 (Fig. 7). In this case, the
synchronous character of the precession (i.e., 3,® # 0) and
the nutation (i.e., 3,0 #0) is almost perfectly verified de-
spite a signal-to-noise ratio in S(i) of the order of ~10%.
This situation is about halfway between the results of
Figs. 5(a) and 5(b) at y=7/4 and those of Figs. 5(c) and
5(d) at x=0.74.

B. Transition from Periodic Rotating Regime to
Quasi-Periodic Rotating Regime

When y>0.72, the periodic rotating regime is predicted to
lose its stability at p=ppr_qpr (Which depends on y; see
Fig. 3). The resulting director dynamics then becomes a
quasi-periodic rotation characterized by two frequencies
fo and f1. This is illustrated in Figs. 8(c) and 8(d) in which
S(A) and S(I,,) are calculated for y=0.74 and p=1.50. Al-
though the PR— QPR transition appears similar to the
one observed in the CP case with regard to the generation
of a new frequency f1,31 the spectral composition of the dy-
namical variables in the QPR state are different in the CP
and the EP cases. This can be seen by comparing Figs.
8(a) and 8(b), taken at y=n/4 and p=1.50, with Figs. 8(c)
and 8(d). Both S(A) and (I,,) contain the frequencies
nf1+2mf in the EP case (see Table 2), whereas the spec-
tral contents of the same quantities are given, respec-
tively, by nf) and nf; = 2f, in the CP case.?! In other words,
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Fig. 8. Calculated power spectra S(A) and S(I,,) in the quasi-
periodic rotating regime for p=1.50 at (a), (b) y=7/4 and (c¢), (d)
x=0.74.
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Fig. 10. Calculated A/2 versus p at y=0.74 showing the super-
critical Hopf bifurcation from the periodic to the quasi-periodic
rotating regime at p=ppg_qpg. The gray region represents the
values explored during the oscillations of A(7). Inset: amplitude
A=(Apax—Amin)/27 characterizing the oscillation of A(7) in the
neighborhood of the bifurcation point p=ppg_.qpr-

both precession and nutation are quasi periodic in the EP
case, whereas only precession is quasi periodic in the CP
case.

We have observed experimentally the transition from
the PR to the QPR regime, illustrated for y=0.76 below
the threshold in Fig. 7 and above the threshold in Fig. 9.
At the transition to quasi-periodic dynamics, the emer-
gence of the new frequency f; and its harmonics changes
dramatically the experimental spectra S(I epier) and S(i)
(Fig. 9). As predicted by theory, f; is the dominant fre-
quency of S(Zeenter) [Fig. 9(a)l, and 2f; is the dominant fre-
quency of S(i) [Fig. 9(b)]. Recall that I .., (experimental)
is related to A (theoretical) and i (experimental) is related
to I, (theoretical).
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We can further characterize the nature of the bifurca-
tion at p=ppg_.qpr by verifying the scaling properties as-
sociated with the bifurcation. First, we have checked in
the calculations that the amplitude of the limit cycle, A,
satisfles the scaling law A(p)-A(ppr_qerr)=0O(p
- PPR—QPR) 172 in the neighborhood of the bifurcation point.
For this purpose, we define theoretically this amplitude
as A=(Apax—Amin)/27, where Ap . min are, respectively,
the maximum and the minimum of the oscillating phase
delay A(7) for a given p. The results are shown in Fig. 10
in which A is plotted versus p. In the vicinity of the bifur-
cation, we find indeed that .A(p)-.A(ppr_qer)=0(p
_pPRHQPR)y with = 0.5 and PPR—QPR~ 1.45. We have also
verified that the frequency f; satisfies the scaling law
f1(p)=f1(ppr .qpr)=O(p—ppr .qpr) a@s one can see from
Fig. 11(b). Together, these results confirm that there is a
secondary supercritical Hopf bifurcation at p=ppgr_.qpg.

C. Quasi-Periodic Rotating Regime

The dependence of the frequencies f, and f; as a function
of the excitation intensity is displayed in Fig. 11 for dif-
ferent values of y: y=m/4 (curve 1), xy=0.75 (curve 2), and
x=0.73 (curve 3). The frequency [, is obtained from the
calculation of S(I,,), which exhibits the dominant fre-
quency 2f;. On the other hand, in the QPR regime, the
frequency /7 is extracted from S(A), where it is the domi-
nant frequency [see Figs. 8(c) and 9(a)].

The transition PR— QPR is associated with an abrupt
change of the slope of the precession frequency f,, versus
intensity [see Fig. 11(a)]. This can be rephrased as fol-
lows. In the QPR regime, the phase shift A explores val-
ues closer to 27 as p increases (Fig. 10), and the total
angular-momentum transfer per photon to the NLC, (1
—cos A)h, is correspondingly smaller. Figures 11(a) and
11(b) show that a decrease of the ellipticity at fixed inten-
sity corresponds to a decrease of both f; and f;. The de-
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Fig. 11. Calculated characteristic frequencies (a) f;, and (b) f;
versus p in the periodic and quasi-periodic rotating regime for
x=m/4 (curve 1), x=0.75 (curve 2) and y=0.73 (curve 3).
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Fig. 12. Calculated temporal mean value (A(7)) of A(7) divided
by 27 versus p in the periodic and quasi-periodic rotating re-
gimes for y=m/4 (curve 1), x=0.75 (curve 2), and y=0.73 (curve
3).

crease of fj is related to the fact that the temporal mean
value (A(7)) of A(7) at fixed p gets closer to 27 as y de-
creases (see Fig. 12).

D. Transition from Periodic or Quasi-Periodic Rotating
Regime to the Largely Reoriented Regime

Starting from the PR or QPR regime and increasing the
intensity, we find that an instability eventually occurs at
p=pr, (which depends on y; see Fig. 3), and the director
settles to a largely reoriented oscillating (LO), stationary
distorted (LD), or rotating (LR) state. As previously men-
tioned in Subsection 3.A, the LR regime exists only in a
narrow region Ay~ 10~2 around y=/4 and is not seen in
Fig. 3 (see Subsection 4.E). From Fig. 3 we see that the
final state above py, is a LO state if y<0.45 and a LD state
if y>0.45. We find that the transition from the PR or QPR
regime to the largely reoriented states is related to an in-
crease of the period of the corresponding limit cycle. More
precisely, this period appears to diverge logarithmically at
p=pr. This behavior is illustrated in Fig. 13 for x=0.57,
where we find the bifurcation at p;,=1.02025... . In this
figure, the period T'=1/(2f;) of the instantaneous angular
velocity Q(7)=d®y/d7is plotted as a function p (the factor
% in the expression of T is introduced owing to the 7 in-
variance around the z axis). A perfect agreement with the
calculated values (filled circles) is obtained with the pa-
rameterization a+b In(p,—p) for a=8232 and b=
—2.406 (solid curve). The origin of this critical slowing
down near the bifurcation point is illustrated in Fig. 14,
where the director trajectory in the (n,,n,) plane is
shown. Slightly below p;, (p=1.02025, black solid curve on
the left) the trajectory approaches a saddle fixed point
(filled square) during increasingly long times; this corre-
sponds to the plateau behavior when ) ~0 in the inset of
Fig. 13. On the other hand, slightly above p;, (p=1.02026,
gray curve in Fig. 14), the director eventually settles to a
stable focus (filled circle) that corresponds to a LD state.3®
The nature of the singularity at p=p;, guarantees that the
transition has the character of a homoclinic
bifurcation.?2® In fact, we deal here with a homoclinic
bifurcation of the simplest type in which a limit cycle col-
lides with a saddle point having only one unstable direc-
tion (all the eigenvalues have negative real parts except
one, which is real and positive).
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As already introduced in Subsection 3.A, a characteris-
tic feature of the homoclinic bifurcation is that the tran-
sition is accompanied by a small relative jump of the re-
orientation amplitude for y<0.66 (typically, da/a@<0.1),
whereas for y>0.66 it is quite large (typically, da/a~ 10).
This behavior is related to the fact that, for y<0.66, part
of the limit cycle, associated with the PR state just below
the transition, extends to large reorientations in the
(ny,n,) plane. Consequently, it is already close to the
largely reoriented states nearby [see, e.g., curves 3 and 4
in Fig. 4(a)].

Finally, one should mention the particular situation
when the PR regime vanishes at xy=0.33 (see Fig. 3).
There, a direct transition from the O to the LO regime oc-
curs as the intensity is increased. The corresponding pic-
ture is this: As the intensity is increased, the limit cycle
associated with the O regime collides with an unstable
fixed point, thus preempting the gluing at the origin. This
dynamical sequence suppresses the appearance of the PR
regime.

E. Transition between Largely Reoriented States

When the excitation beam is circularly polarized (y
=m/4), it is already known that a LR state appears at
high intensities.'® This slow dynamics is quite fragile and
disappears for perturbation of the ellipticity as small as
Ax~ 1072, giving rise to a LD regime instead. With suffi-
cient care, however, its experimental observation is
possible36 because the value of y can be controlled with
great accuracy. The mechanism for the disappearance of
the LR regime is the following. In the CP limit, the pre-
cession frequency associated with the LR state exhibits
almost periodic modulation as a function of the intensity
with zero minimum values (see Fig. 3 of Ref. 15). As soon
as the ellipticity is reduced, we find that the points of zero
frequency transform into finite regions that continue to
increase as y is further decreased. Eventually, these re-
gions join, leading to the LR— LD transition.

In the region of largely reoriented states, the LO re-
gime appears for y<<0.51 (see Fig. 3). This state is char-
acterized in the (n,,n,) plane by a limit cycle with a small
radius [see curve 4 in Fig. 4(a)]. Because of the presence
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Fig. 13. Characterization of the homoclinic bifurcation near p;,
for x=0.57, T(p)=0O[In(p;,—p)], where T is the period of the in-
stantaneous angular velocity ()(7)=d®d,/d 7. The solid curve is the
best fit to the theoretically calculated values (circles). Inset: time
evolution of ((7) at p=1.02025.
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Fig. 14. Director trajectory in the (n,,n,) plane near the ho-
moclinic bifurcation point p;, at y=0.57. Inset: homoclinic PR tra-
jectory slightly below p; (p=1.02025). Main graph: magnification
of the region delimited by the box in the inset. The black solid
curve on the left is part of the PR trajectory at p=1.02025, and
the gray curve is the transient trajectory converging to a stable
fixed point just above p; (p=1.02026). The dashed line (solid line
on the right) represents the location of the unstable (stable) fixed
points in a small range of p centered around p;. The filled square
and filled circle represent, respectively, the unstable and the
stable fixed point at p=1.02025 and p=1.02026.

of multistability, the boundary between the LD and the
LO regimes in the (y,p) plane demands careful attention.
To obtain this locus, we have proceeded as follows. First,
for a fixed y>0.45 and starting from the PR regime, we
slowly increase p, and we find the LD state to which the
system settles as we cross the transition at p=p;. This is
done by integrating the set of Egs. (5) and (6) over a time
duration much larger than any transients until a stable
fixed point solution is obtained. Figure 14 illustrated this
procedure: Slightly above p;, a portion of a transient tra-
jectory (gray curve) is seen to converge to a stable fixed
point indicated by a filled circle. Next, we follow the LD
states for p>p; according to the procedure described in
Subsection 2.A: The solid line on the right of Fig. 14
shows the result for y=0.57. By performing the linear sta-
bility analysis of these LD states, we can finally conclude
that the LD states (which were stable at p=p;) lose their
stability at some higher value of p in the range 0.45<y
<0.51, leading to a LO state. In fact, the transition LD
—LO takes place via a Hopf bifurcation. Moreover, these
unstable LD states eventually recover their stability at
higher intensities leading to the inverse transition LO
— LD.

5. CONCLUSION

The nonlinear reorientation dynamics generated by ellip-
tically polarized light at normal incidence to a homeotro-
pic nematic liquid-crystal film has been investigated. In
particular, the dramatic sensitivity of the dynamics on ro-
tational symmetry breaking has been discussed on the ba-
sis of experimental observations and theoretical predic-
tions. The complete bifurcation diagram with the light
intensity and the ellipticity as control parameters has
been calculated rigorously. We have found that a quasi-
periodic regime extends from the circular to the elliptical
polarization excitations down to the value y=0.72. How-
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ever, in the elliptical case, the spectra of the dynamical
variables become more complicated than in the circular
case, although they are still characterized by two distinct
frequencies associated with precession and nutation. As
in the circular case, the quasi-periodic states appear via a
secondary supercritical Hopf bifurcation, and experimen-
tal observations have confirmed the existence of the
quasi-periodic regime. In addition, we have found a new
dynamical regime that corresponds to an oscillating re-
gime with large reorientation for ellipticity values lower
than xy=0.51. More generally, the transition from the pe-
riodic or the quasi-periodic rotating regime to a largely re-
oriented rotating, oscillating, or distorted regime has
been identified as an homoclinic bifurcation in which a
limit cycle collides with a saddle point. The different tran-
sitions between these different states associated with
large molecular reorientation and their hysteretic behav-
ior when the intensity is decreased have also been identi-
fied.

These results reinforce the surprisingly rich nature of
the molecular reorientation dynamics driven by the trans-
fer of spin angular momentum of light in liquid crystals
materials.
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