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Realization of discrete quantum billiards in a two-dimensional optical lattice
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We propose a method for optical visualization of the Bose-Hubbard model with two interacting bosons in
the form of two-dimensional (2D) optical lattices consisting of optical waveguides, where the waveguides at
the diagonal are characterized by different refractive indices than others elsewhere, modeling the boson-boson
interaction. We study the light intensity distribution function averaged over the direction of propagation for both
ordered and disordered cases, exploring the sensitivity of the averaged picture with respect to the beam injection
position. For our finite systems, the resulting patterns are reminiscent the ones set in billiards, and therefore
we introduce a definition of discrete quantum billiards and discuss the possible relevance to its well-established
continuous counterpart.
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A very rich variety of wave phenomena originally discov-
ered in the context of atomic and solid-state physics recently
attracted much attention due to their analogy with optical
systems. A prominent example is the Anderson localization,
the phenomenon originally discovered as the localization
of electronic wave function in disordered crystals [1] and
later understood as a fundamental universal phenomenon of
wave physics. Related recent experiments were performed on
light propagation in spatially random nonlinear optical media
[2,3] and on Bose-Einstein condensate expansions in random
optical potentials [4]. A second example is the well-known
solid-state problem of an electron in a periodic potential with
an additional electric field, which led to investigations of Bloch
oscillations and Landau-Zener tunneling in various physical
systems such as ultracold atoms in optical lattices [5–7] and
optical waves in photonic lattices [8,9]. Recent progress in
the experiments stimulated a new turn in theoretical studies
dealing with the evolution of a wave packet in nonlinear
disordered chains [10] and in a nonlinear Stark ladder [11], and
the effect of Anderson localization of light near boundaries of
disordered photonic lattices [12], for example. Other examples
are the classical analog of beam dynamics in one-dimensional
(1D) photonic lattices to quantum coherent and displaced
Fock states [13] and a classical realization of the two-site
Bose-Hubbard model (applicable to the physics of strongly
interacting many-body systems), based on light transport in
engineered optical waveguide lattices [14].

In this Rapid Communication, we study a classical analog
of a beam propagating in two-dimensional (2D) photonic
lattice to quantum coherent dynamics of two particles in
a 1D chain using the Bose-Hubbard model. We consider
different situations ranging from the simple ordered case
without interaction to the disordered case with interaction in
our finite systems. Sometimes the resulting patterns pretty
similar to the ones for the classical and/or quantum billiards,
which are known to exhibit regular and chaotic behaviors (see,
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FIG. 1. (Color online) Geometry of setup: A beam enters the 2D
optical lattice and propagates along the z axis. The refractivity index
is constant along the z axis and is either periodic or disordered in
transverse directions. The corresponding mapping to the dynamics
of two interacting distinguishable bosons in a chain is also done (see
the text for details). The interaction between bosons is introduced by
taking the different from the rest refractive index for the diagonal
waveguides. The injection of a beam to the diagonal waveguide
mimics launching initially both bosons at the same site (upper inset),
while injecting the beam into an off-diagonal waveguide corresponds
to the two bosons located initially on different sites (lower inset).

e.g., Ref. [15]). The advantage of our setup in comparison with
traditional microwave realization of quantum billiards (where
the measuring devices introduce additional perturbations in
the system) is that the resulting quantum patterns could be
simply observed as an optical image. We also emphasize the
growing interest to the two-particle problem in the context
of quantum correlations between two noninteracting particles
evolving simultaneously in a disordered medium [16,17] and
quantum walks of correlated photons, which provide a route
to universal quantum computation [18]. Thus, the obtained
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results might be applicable to both classical and quantum
systems.

Let us introduce a standard Bose-Hubbard Hamiltonian
describing two distinguishable bosons (or two fermions with
opposite spins) in a chain with N sites:

Ĥ =
N∑

j=1

[(â†
j+1âj + b̂

†
j+1b̂j + H.c.) + Uâ

†
j âj b̂

†
j b̂j ], (1)

where b̂
†
j (â†

j ) and b̂j (âj ) are boson creation and annihilation
operators on a lattice site j and U is the onsite interac-
tion strength. Starting from the time-dependent Schrödinger
equation i∂t |�(t)〉 = Ĥ|�(t)〉, we expand |�(t)〉 in terms
of the N2 orthonormal eigenstates of a number operator,
|m,n〉 ≡ b̂

†
mâ

†
n|0〉, as |�(t)〉 = ∑N

m,n=1 cmn(t)|m,n〉, where the
amplitudes cmn(t) satisfy the following set of equations:

iċmn = Uδmncmn +
N∑

m′,n′=1

Rm′n′
mn cm′n′ ,

(2)

Rm′n′
mn = δm′m+1δn′n + δm′,m−1δn′n + δm′mδn′n+1 + δm′mδn′n+1.

Note that Eqs. (2) are invariant under permutation of m

and n, and therefore it is natural to represent cmn as a
sum of symmetric cS

mn = (cmn + cnm)/
√

2 and antisymmetric
cA
mn = (cmn − cnm)/

√
2 functions. In such a basis, the matrix

Rm′n′
mn is decomposed into two irreducible parts, one of

which corresponds to the Bose-Hubbard model with two
indistinguishable bosons and the other of which describes the
physics of two indistinguishable spinless fermions. For the
symmetric initial conditions, cmn(0) = cnm(0), the dynamics
is reduced to the former case (two indistinguishable bosons
on sites m and n), whereas the latter case is realized for the
antisymmetric initial conditions, cmn(0) = −cnm(0).

Remarkably, Eqs. (2) are the same as the one used for the
description of light propagation through 2D optical lattices
[2] (for schematics, see Fig. 1) within the tight-binding
approximation, where longitudinal dimension z plays a role of
time. This approximation is valid when a lattice is constructed
such that tunneling into nearest neighboring waveguides is
allowed and there is a difference between the refractive
indices of the diagonal nd and off-diagonal n0 waveguides
which models the interaction (with the interaction strength
U ∼ n0 − nd ). Thus, injecting a light beam at the waveguide
with a position x = m, y = n (asymmetric initial conditions)
corresponds to the dynamics of two distinguishable interacting
bosons in a chain, placed initially on sites m and n. One can
also think about the Bose-Einstein condensate embedded into
a 2D optical lattice, and then Eqs. (2) describe the evolution
of some initial matter wave packet through the lattice.

In this Rapid Communication, we consider the system with
hard boundaries having cmn = 0 outside a square and monitor
the time-averaged wave function

Pmn ≡ lim
T →∞

1

T

∫ T

0
|cmn(t)|2dt, (3)

referring to Pmn as to the averaged two-particle probability
distribution function (PDF). To calculate PDFs we first solve

the eigenvalue problem Ĥ|q〉 = λq |q〉 and then expand cmn(t)
with respect to the eigenvectors as

cmn(t) =
N2∑
q=1

φqL(q)
mne

−iλq t , (4)

where L(q)
mn ≡ 〈q|m,n〉 is the eigenvector which belongs to

the eigenvalue λq and φq ≡ ∑N
m,n=1 cmn(0)L(q)

mn is its initial
amplitude. Next, the averaged PDF is calculated by the
following formula:

Pmn =
∑

q

|ϕq |2L(q)2
mn +

∑
i

∣∣∣∣∣∣
∑
qr

i

ϕqr
i
L(qr

i )
mn

∣∣∣∣∣∣
2

, (5)

where the first sum runs over all nondegenerate eigenvalues
and the second sum corresponds to the summation with respect
to r-fold degenerate eigenvalues λqi

.
Intuitively it seems that the light injected into one of the

waveguides should spread over a whole lattice; however,
the real situation is the opposite due to the interference
from the hard boundaries. Let us start from the simplest
noninteracting case, U = 0 (for the optical counterpart shown
in Fig. 1, waveguides must all be identical). As seen from
Fig. 2, a well-defined pattern for Pmn corresponds to each
initial injection point. Thus, the system keeps the information
about its initial state, and from the averaged picture one can
recover an initial signal. It should be noted that these patterns
might be strongly modified when the interaction is switched
on, U 
= 0 (see Fig. 3). Remarkably, the pattern’s structure
is reminiscent of billiards, and therefore we introduce the
notion of discrete quantum billiards and seek the analogies

FIG. 2. (Color online) Characteristic pictures for discrete quan-
tum billiard realization for different injection points depicted by a red
cross in the absence of disorder and interaction (W = 0 and U = 0).
In the main graphs, the averaged PDFs [see Eq. (3)] are displayed.
The lower insets show the numbers of initially injected waveguides
(or numbers of sites at which the particles are initially located).
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FIG. 3. (Color online) All parameters and quantities are the same
as in Fig. 2, except the interaction constant U = 1.

with the usual continuous counterparts. The first step toward
this direction is to explore the possibility of quantum chaos
realization in such systems. We consider two possibilities
to observe the transition toward quantum chaos. The first
one is symmetry breaking by placing a square with rigid
boundaries inside the system, as shown in Fig. 4. (Such a case
has no analogy with the two-interacting-particles problem but

FIG. 4. (Color online) Characteristic pictures for discrete quan-
tum billiard realization with a rigid square placed inside a system
for the interaction constant U = 1 and the same injection point
depicted by a red cross. (a), (b) Symmetric and asymmetric situations,
respectively, with the corresponding probability density functions
of eigenvalue spacings s shown in (c) and (d). (c) The Poisson
distribution (6), with the average spacing d = 0.0085. (d) The
Wigner-Dyson distribution (7), with the average spacing d = 0.0075.

might be realized using the optical lattices with a missing
square area.) We monitor then the statistical properties of the
eigenvalue spacings s = |λq+1 − λq | for different locations of
the square, keeping injection point and interaction constant
the same. It is seen that in the symmetric case the Poisson
distribution

P (s) = 1/de−s/d (6)

is realized, while for the asymmetric case the Wigner-Dyson
distribution is observed:

P (s) = πs/(2d2) e−πs2/(4d2). (7)

Thus, the onset of quantum chaos can be visualized via the
classical optical system of coupled waveguides.

The second mechanism of quantum chaos realization is an
introduction of the disorder via adding the following terms to
the Bose-Hubbard Hamiltonian (1):

Ĥd =
N∑

j=1

[
εa
j â

†
j âj + εb

j b̂
†
j b̂j

]
. (8)

Here εa
j and εb

j are two disorder potentials with random num-
bers from the interval [−W/2,W/2], where W stands for the
disorder strength. Finally, the modified evolution equations are

iċmn = (Wmn + Uδmn) cmn +
N∑

m′,n′=1

Rm′n′
mn cm′n′ , (9)

where the matrix Rm′n′
mn is given by Eq. (2) and Wmn = εa

m + εb
n

are correlated disorder parameters. For the sake of simplicity,
we take symmetric disorder εa

j = εb
j that, together with

symmetric initial conditions, corresponds to the dynamics
of two interacting indistinguishable bosons or the beam

FIG. 5. (Color online) Averaged PDFs both in time and over many
disorder realizations (all parameters are shown on the figures). The
injection point in all graphs is taken at the middle of 2D optical lattice,
m = n = N/2.
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FIG. 6. (Color online) PDFs of eigenvalue spacings s for three
different cases and a chain with N = 51 (the events with s = 0 due to
degeneracy are not counted). Black curve: W = 0, U = 2 (disorder
strength is zero only). Red curve (dark gray): W = 2, U = 2. The case
with uncorrelated disorder is considered. Green dash-dotted curve: the
Wigner-Dyson distribution (7), with the average spacing d = 0.0032.
Blue dashed curve: the Poisson distribution (6), with the average
spacing d = 0.0032.

propagation in 2D optical lattices. The typical structures for
Pmn, averaged out with respect to many disorder realizations,
are shown in Figs. 5(a) and 5(b). As is seen, the averaged
PDFs demonstrate well-pronounced patterns, which look
different than the case with a single disorder realization,
when the PDF has many spots at different locations. For the
noninteracting case, the PDF has an anisotropic structure with
two distinct directions, m = N/2 and n = N/2, along which
the particle motion mostly develops in average. Besides that,
a slight contribution of two particle states is also visible. For
U = 2, the interaction is already strong enough such that
the contribution of states corresponding to the breather band

becomes essential and the two particles mostly prefer to form
a composite state and travel together.

Next, we consider the case of uncorrelated disorder [see
Figs. 5(c) and 5(d)], taking Wmn as a sum of two independent
random numbers for each m and n (thus generating 2N2

random numbers) distributed uniformly within [−W/2,W/2].
In principle, each element Wmn could have been chosen
as a random number from the interval [−W,W ] but the
former choice has better similarity with the correlated case.
Remarkably, the case with uncorrelated disorder has no
analogy with two interacting particle problem but has a simple
realization in the optical context. It is worth noting that the
pattern structures are rather different for the correlated and
uncorrelated cases [compare, e.g., Figs. 5(a) and 5(c)]. In the
latter case, the correlations are destroyed. As a consequence,
there are no preferable directions visible in the former case,
and the pattern acquires an isotropic structure.

Interestingly, statistical properties of level spacing in two-
and three-dimensional Anderson models for the noninteracting
case have been studied thoroughly in Refs. [19] and [20]. Here,
setting different values of disorder, varying the shape of a
lattice, and changing the interaction strengths yield additional
ways to governing the chaos level of the system, as shown in
Fig. 6. For nonzero disorder and U , the probability density
function of the spacings s has a tendency to go to the Wigner-
Dyson distribution and, as a consequence, a system becomes
more chaotic.

In conclusion, in this Rapid Communication we have dis-
cussed various interpretations of the optical beam propagation
through 2D optical crystals ranging from interacting cold
atom dynamics and two-particle Anderson localization to the
quantum billiard problems connected with the transition to
quantum chaoticity.

The authors are indebted to I. Babushkin, S. Denisov, and
N. Li for useful discussions regarding the billiards issues.
R.Kh. is supported by RNSF (Grant No. 09/04) and STCU
(Grant No. 5053).

[1] P. W. Anderson, Phys. Rev. 109, 1492 (1958).
[2] T. Schwartz et al., Nature (London) 446, 52 (2007).
[3] Y. Lahini et al., Phys. Rev. Lett. 100, 013906 (2008).
[4] J. Billy et al., Nature (London) 453, 891 (2008); G. Roati et al.,

ibid. 453, 895 (2008).
[5] M. Gustavsson et al., Phys. Rev. Lett. 100, 080404 (2008).
[6] O. Morsch, J. H. Muller, M. Cristiani, D. Ciampini, and

E. Arimondo, Phys. Rev. Lett. 87, 140402 (2001); G. Ferrari,
N. Poli, F. Sorrentino, and G. M. Tino, ibid. 97, 060402 (2006).

[7] B. P. Anderson and M. A. Kasevich, Science 282,
1686 (1998); M. Ben Dahan, E. Peik, J. Reichel,
Y. Castin, and C. Salomon, Phys. Rev. Lett. 76, 4508
(1996).

[8] T. Pertsch, P. Dannberg, W. Elflein, A. Brauer, and F. Lederer,
Phys. Rev. Lett. 83, 4752 (1999); R. Sapienza et al., ibid. 91,
263902 (2003); H. Trompeter et al., ibid. 96, 023901 (2006);
F. Dreisow et al., ibid. 102, 076802 (2009).

[9] R. Morandotti, U. Peschel, J. S. Aitchison, H. S.
Eisenberg, and Y. Silberberg, Phys. Rev. Lett. 83, 4756
(1999).

[10] A. S. Pikovsky and D. L. Shepelyansky, Phys. Rev. Lett. 100,
094101 (2008); S. Flach, D. O. Krimer, and Ch. Skokos, ibid.
102, 024101 (2009); M. Johansson, G. Kopidakis, and S. Aubry,
Europhys. Lett. 91, 50001 (2010); T. V. Laptyeva et al., ibid. 91,
30001 (2010); A. Pikovsky and S. Fishman, Phys. Rev. E 83,
025201(R) (2011).

[11] D. O. Krimer, R. Khomeriki, and S. Flach, Phys. Rev. E 80,
036201 (2009); A. R. Kolovsky, E. A. Gomez, and H. J. Korsch,
Phys. Rev. A 81, 025603 (2010).
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