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I. INTRODUCTION

An interesting optical phenomenon demonstrated by nematic liquid crys-
tals (NLCs) called self-induced stimulated light scattering (SILS) was a
subject of intensive study during the last two decades. It is known that
the NLC is an anisotropic uniaxial medium with the optical axis parallel
to the local molecular distribution described by the director n(r,t). When
the light propagates through the NLC, its electric field exerts a torque
on the molecules that can cause collective molecular reorientation. The
light polarization inside the NLC layer is also changed because of birefrin-
gence. These two effects together can give rise to interesting phenomena
such as persistent rotation of the molecules in SILS.

As is known for some time, circularly polarized light incident normally
on a homeotropically aligned NLC film induces a first-order Freedericksz
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transition (at some critical value of intensity) leading to a reoriented state
with uniform director precession [1]. This effect is well understood and can
be interpreted in terms of angular momentum transfer from the light to the
medium. Since the collective molecular rotation dissipates energy, the light
beam has to transmit part of its energy to the medium. As the NLC is a
transparent medium this energy loss leads to a red shift of part of the light
beam [2,3]. With further increase of light intensity a transition to a more
complex rotating state with a nutation-type motion of the director has
recently been observed [4,5]. Here we investigate theoretically the light-
induced instabilities and the regimes of director motion as a function of
light intensity.

II. THEORETICAL MODEL

We consider a circularly polarized plane wave incident perpendicularly on a
layer of nematic LC that has initially homeotropic alignment (with strong
homeotropic anchoring at the boundaries). The light is polarized in the
plane of the layer (the (x,y) plane) and propagates along the positive
z-axis (see Fig. 1). We assume that the diameter of the laser beam is much
larger than the thickness of the layer, and consider the case when the

FIGURE 1 Geometry of the setup: circularly polarized light incident perpendicu-

larly on a nematic LC layer with the director n0 jj z (homeotropic state). The com-

ponents of the director n are described in terms of the angles h, u (h ¼ 0 in the

homeotropic state).
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director depends only on z; t. Then the light inside the nematic can be
treated as a plane wave. We introduce the spherical angles hðz; tÞ and
uðz; tÞ to describe the director n ¼ ðsin h cosu; sin h sinu; cos hÞ.

The electric field is governed by Maxwell’s equations. These equations
contain the dielectric tensor that depends on the director components:

eij ¼ e?dijþ eaninj; ð1Þ

where ea ¼ ejj � e? is the dielectric anisotropy and e?ðejjÞ is the dielectric
permittivity perpendicular (parallel) to n. We write the electric field in
the form: E(r,t) ¼ 1=2(E(z,t)e� i x tþ c.c.), where k0 ¼ x=c is the wave-
number in vacuum and E(z,t) is the amplitude that varies slowly in time
compared to x�1 and obeys the equation:

@2I

@z2
¼ � k20

ezz
MI ð2Þ

where

M ¼ exxezz � e2xz exyezz � exzeyz
exyezz � exzeyz eyyezz � e2yz

� �
; I ¼ Ex

Ey

� �
:

The z component of the electric field can be found from the following
relation:

Ez ¼ � exzEx þ eyzEy

ezz
: ð3Þ

We may now perform the transformation from the basis (ex,ey) into the
local basis (eo,ee?) where the matrix M has a diagonal form [6]. In this
new coordinate system the field components are the amplitudes of the ordi-
nary Eo and extraordinary Ee? waves in the (x,y) plane, respectively,
related to Ex, Ey as follows:

w ¼ OI; ð4Þ

where

O ¼ � sinu cosu
cosu sinu

� �
and w ¼ Eo

Ee?

� �
:

Introducing dimensionless z! zp=L, k0! k0L=p (L is the thickness of the
layer) and rewriting Eq. (2) in terms of Eo, Ee? under the geometric optics
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approximation (k0 >> 1), the equations for the ordinary and extraordinary
waves can be derived:

A0
o ¼ �u0

ffiffiffiffi
ke
ko

q
eiaðzÞAe

A0
e ¼ � k0eAe

4ke
þ u0

ffiffiffiffi
ko
ke

q
e�iaðzÞAo

8<
: ð5Þ

Here the prime marks the derivative with respect to z (0� z� p). Ao, Ae

are amplitudes that vary slowly with z on the scale k�1
0 and are defined by

Eo ¼ Ao � eik0
ffiffiffiffi
ko

p
�z; Ee? ¼ Ae � e

ik0

Rz
0

dz0
ffiffiffiffiffiffiffi
keðz0

p
Þ

ð6Þ

and

k0 ¼ e?; ke ¼
e?ðea þ e?Þ
e? þ ean2

z

; aðzÞ ¼ k0

Zz

0

ffiffiffiffiffi
ke

p
�

ffiffiffiffiffi
ko

p� �
dz0 ð7Þ

Here aðzÞ is the phase delay induced by the nematic between the ordinary
and extraordinary waves.

The boundary conditions for the amplitudes Ao, Ae (normalized to the
amplitude of the incoming light) at z ¼ 0 are:

Ae0j j2¼ Ao0j j2¼ 1

2
; Ae0A

�
o0 ¼ � i

2
; ð8Þ

where the sign in Eq. (8) defines the helicity of the incident light.
The equations for h and u are obtained from the equations of motion of

the director n, which include the elastic, electromagnetic and viscous
torques [7]:

@u
@t

¼ 1

sin2 h

@

@z
½ð1� ð1� k2Þ sin2 hÞ sin2 hu0�

þ 2q
ke
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Re½AeA
�
oe

iaðzÞ� @h
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¼ ð1� ð1� k1Þ sin2 hÞh00

� sin 2h
2

h
ð1� k1Þh02 þ ð1� 2ð1� k2Þ sin2 hÞu02

� 2q
� ke
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�2

Aej j2
i

ð9Þ

Here k1 ¼ K1=K3, k2 ¼ K2=K3 where K1, K2, K3 are, respectively, the
splay, twist and bend elastic constants of the LC [7]. In Eq. (9), time t is
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normalized to the characteristic relaxation time s of the director and
q ¼ I=Ic is dimensionless incident light intensity wth

s ¼ c1L
2

p2K3
; Ic ¼

2p2

L2

cðe? þ eaÞK3

ea
ffiffiffiffiffi
e?

p ð10Þ

where c1 is an effective rotational viscosity and Ic=2 is the threshold inten-
sity of the light induced Freedericksz transition (LIFT) for linearly polar-
ized light at perpendicular incidence.

The boundary conditions for h, u are (strong homeotropic anchoring):

u0
z¼0;p ðtÞ ¼ 0; hz¼0;pðtÞ ¼ 0 ð11Þ

It should be noted that the coupled director and field equations (5), (9)
together with the boundary conditions (8), (11) are invariant with respect
to rotations around the z-axis u ! uþ du (as a consequence of isotropy in
(x,y) plane).

The field equations (5) may be solved by means of successive iterations
assuming that u0j j < 1 (not too large gradient of the twist distortion). The
zeroth-order solution of Eq. (5) is given by:

Að0Þ
o ¼ Ao0; Að0Þ

e ¼ Ae0
ko
ke

� �1
4

ð12Þ

and the recurrence relations for the solution after the m iterations has the
following form:

A
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The result after m iterations can be substituted into the evolution equa-
tions (9).

We then expand h and u with respect to z in systems of orthogonal func-
tions (similar to [8]) which satisfy the boundary conditions (11):

h ¼
X
n¼1

hnðtÞ sinnz; u ¼ u0ðtÞ þ
X
n¼1

unðtÞ
sin½ðnþ 1Þz�

sin z
ð14Þ

The zeroth mode u0(t) in Eq. (14) does not depend on z and describes the
pure rotation of the director (without elastic distortion) around the
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z-axis. After substituting the expansions (14) into Eqs. (9) and projecting
on the modes of expansion (Galerkin method), a set of coupled nonlinear
ODE-s for the modes hn(t), un(t) is obtained. We have solved these equa-
tions numerically, choosing the number of modes and iterations for Ao, Ae

such that the accuracy of the calculated director components was better
than 1%.

As a result of isotropy, the ODE for u0(t) is decoupled from the rest and
from the boundary conditions Eqs. (8) and (11). This is the case only for
circularly polarized incident light.

In the calculations, we used the material parameters for the nematic E7 (at
room temperature): K1 ¼ 11.09� 10�7 dyn, K2 ¼ 5.82� 10�7 dyn,
K3 ¼ 15.97� 10�7 dyn, [8], ne ¼ 1.746, no ¼ 1.522 [9] (refractive indices of
the ordinary and extraordinary light, respectively), k ¼ 532nm (wavelength

FIGURE 2 Maximum of the director components nx, ny with respect to t at point

z ¼ p=2� 0.1 inside the nematic layer versus normalized intensity q. Solid (dashed)

lines are stable (unstable) solutions. At q ¼ q1: transition to the regime of uniform

director precession; at q ¼ q�1: switch back to the homeotropic state; at q ¼ q2: tran-
sition to the regime of nonuniform director precession.
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of laser), c1=K3 ¼ 106s cm�2 [10]. The calculations were made for a layer of
100mm thickness. For these parameters Ic � 2.6 kW=cm2, s � 10 s.

III. FIRST REGIME OF UNIFORM DIRECTOR PRECESSION

As demonstrated in [1] the homeotropic state remains stable when the
incident light intensity is below some critical value (q1 ¼ 1 in normalized
units). Above the threshold q1 the system settles in a state of uniform
precession of the director around the z-axis (UP1). This regime was ana-
lyzed in [3] where the approximate value for the frequency of precession
and the transcendental equation for the phase delay d 	 aðz ¼ pÞ were
found.

Let us start with the analysis of the UP1 regime where u0(t) grows lin-
early in time and the rest of the modes un, hn (n ¼ 1, . . .) do not depend on
t: dun=dt ¼ dhn=dt ¼ 0. Thus, in this case, we must solve a set of nonlinear
algebraic equations on un, hn that is decoupled from the evolution equation
for u0. After solving these equations numerically and substituting un, hn to

FIGURE 3 Limit cycle in the (nx,ny) plane at q ¼ 1.15.
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the equation for u0(t), the frequency 2pf0 ¼ du0=dt ¼ const of the uniform
precession is found.

In Figure 2 the maximum of the director components maxtjnx, nyj
with respect to t at point z ¼ p=2-0.1 inside the nematic versus intensity
q is plotted. As is seen from the figure at q ¼ q1 we deal with a first-order
Freedericksz transition (subcritical Hopf bifurcation) with a hysteresis.
If one starts from the UP1 state and the intensity q is decreased, the
director (ideally) switches back to the homeotropic state at some lower
values of intensity q�1 � 0:88 where a saddle-node bifurcation occurs
(see Fig. 2).

In Figure 3 a limit cycle of the time evolution of the director is shown in
the (nx,ny) plane at z ¼ p=2-0.1 for q ¼ 1.15. It is represented by a simple
circle. Clearly, in the rotational coordinate system (which rotates around z-
axis with a frequency f0) this state is a fixed point.

In Figure 4 the typical time Fourier spectra of nx, ny and of the output
intensities jExj2, jEyj2 are depicted for the UP1 regime. In both spectra only
one peak is present. The frequency of the uniform oscillations of jEx,yj2

FIGURE 4 Spectra of nx, ny and output intensities jExj2, jEyj2 at q ¼ 1.15. Ampli-

tudes of the peaks are in arbitrary units.
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(around some nonzero values) is f Eo ¼ 2f0, since the angle / enters quad-
ratically into the expressions for jEx,yj2:

Exj j2ð Ey

�� ��2Þ ¼ cos2 u Aej j2� sin 2uRe½AeA
�
oe

iaðzÞ� þ sin2 u Aoj j2

ExE
�
y þ E�

xEy ¼ sin 2uð Aej j2� Aoj j2Þ þ 2 cos 2uRe½AeA
�
oe

iaðzÞ�
ð15Þ

As seen from Figure 2, the frequency f0 eventually decreases with increas-
ing light intensity (see Sec. V and [3]).

IV. REGIME OF NONUNIFORM DIRECTOR PRECESSION

As demonstrated experimentally in recent papers, and partially explained
theoretically [4,5], with further increase of the light intensity one reaches
a critical value where the director starts to precess nonuniformly. We found
that the UP1 state becomes unstable in a secondary supercritical Hopf

FIGURE 5 Spectrum of nx, ny at q ¼ 1.55. Amplitudes of the peaks are normalized

to the first peak in the spectrum.
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bifurcation at q2 � 1.45 and at q > q2. The phenomenon can be traced
back to the onset of a nutation-type motion of the director. We will call this
state a state of nonuniform precession of the director (NUP). In this regime
all modes hn(t), un(t) are time dependent and a new frequency f1 (associa-
ted with the nutation) appears in the time Fourier spectrum of nx,y and
jEx,yj2. We solved the set of the evolution equations on modes. It was
necessary to retain at least six modes of both angles and six iterations
for Ao, Ae to obtain the solution with an accuracy better than 1%.

In Figure 2 (upper solid line) the maximum of the director compo-
nents nx,ny versus intensity q for the NUP regime is depicted. As
indicated on the figure, at q > q2 the UP1 state is unstable (dashed
line).

The Fourier spectrum of the oscillating part of um, hm [m ¼ 1, . . .]
contains frequencies nf1, where n is an integer. The frequencies of the
spectra of nxy and jExyj2 are given by the simple formulas ( f0, n

f1 � f0) and ( f E0 ;nf1 � f E0 ) respectively, where f E0 ¼ 2f0. Actually, the

FIGURE 6 Spectrum of jExj2, jEyj2 at q ¼ 1.55. Amplitudes of the peaks are

normalized to the first peak in the spectrum.
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amplitudes of the peaks decay quite fast with increasing n and only first
few peaks are important. In Figures 5 and 6 the spectra of the director
and output intensities for q ¼ 1.55 are depicted. It should be noted that
the amplitudes of the higher-order peaks relative to the main peak at
f ¼ f0 (or f ¼ f E0 for the output intensities) grows with increasing light
intensity.

In Figure 7 the trajectory in the (nx,ny) plane is shown (q ¼ 1.55).
Whereas the trajectory in the laboratory frame (shown) is not closed,
i.e., the motion of the director is quasiperiodic, the director performs
a simple periodic motion with a frequency f1 in the frame that rotates
with a frequency f0 around the z axis.

V. SECOND REGIME OF UNIFORM DIRECTOR PRECESSION

In some narrow region around q3 �1.75 the period T ¼ 1=f1 of the NUP
increases progressively with increasing light intensity, and indeed appears
to diverge logarithmically at q3, with a best fit T / �0:62 lnðq3 � qÞ
(see Fig. 8). At q ¼ q3 the system jumps to a new state of uniform

FIGURE 7 Trajectory in the (nx, ny) plane at q ¼ 1.55.
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precession of the director (UP2) with large reorientation (h 
 74�). The
nature of the singularity at q ¼ q3 signifies that the discontinuous tran-
sition from NUP to UP2 has the character of a homoclinic bifurcation.

In Figure 9 maxtjnx,nyj versus intensity q is depicted for the UP2
regime. Following the UP2 branch to lower intensities one finds a large
and rather complicated hysteretic cycle, which eventually leads to a jump
back to the UP1 regime at q�3 ¼ 1:09, see Figure 9. The left part of the UP2
branch consists of alternatively stable and unstable regions exhibiting a ser-
ies of saddle-node bifurcations. This result was already obtained in the
framework of an approximate model [3]. As is seen from Figure 9, at
q ¼ q3 the unstable part of the UP2 state approaches very closely the
NUP branch. This indicates that at q ¼ q3 the NUP becomes homoclinic
to the unstable UP2 solution. We have checked that this vicinity relates
to all components of the spatial modes (hn, un), [n ¼ 1, . . .], i.e., to the full
space-time solutions.

The minimal description of the full scenario of the UP2 and UP1 regimes
within our framework involves two modes for (h,u), and two iterations for

FIGURE 8 Dimensionless period T ¼ 1=f1 versus q near the limit q ¼ q3. The solid

line is the best fit by a logarithmically diverging function (see text).
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Ao, Ae. One then obtains an accuracy comparable to that of the model pre-
sented in [3].

The phase diagram in (nx,ny) plane is represented by a simple circle for
the UP2 states (as for the UP1 case). Also the Fourier spectrum of nx,y and
jEx,yj2 for the UP2 regime has the same structure as for UP1. However, the
period of director precession is several orders of magnitude larger than that
in the UP1 and NUP regimes. At isolated points of the light intensity the
period can even become infinite, i.e., the limit cycle degenerates to a
continuum of the fixed points on the circle, although it cannot reverse. This
can be understood from the reduced model [3], where the authors pre-
sented an approximate formula for the frequency f0 
 j(cosd� 1)=dj,

FIGURE 9 The maximum of the director components nx, ny with respect to t at

point z ¼ p=2� 0.1 inside the nematic layer versus normalized intensity q. Solid
(dashed) lines are stable (unstable) solutions. At q ¼ q1: transition to the first

regime of uniform director precession; at q ¼ q�1: switch back to the homeotropic

state; at q ¼ q2: transition to the regime of nonuniform director precession; at

q ¼ q3: transition to the second regime of uniform director precession; at q ¼ q�3:
switch back to the first regime of uniform director precession. SN: a series of

saddle-node bifurcations.
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where d is the phase delay introduced in sec. III. It is seen from this formula
that f0 can indeed touch zero with growing d. For the UP1 and NUP regimes
d is always smaller than 2p, whereas for the UP2 regime the values of d vary
over a wide region from 
2p to many times of 2p.

VI. CONCLUSIONS

We have studied theoretically the transitions induced by circularly polar-
ized light incident perpendicularly to a layer of nematic liquid crystal that
has initially homeotropic alignment. In our work we started from the stan-
dard equations of motion for the director coupled to the equations for the
amplitudes of the ordinary and extraordinary light that were solved itera-
tively. Our numerical analysis of the problem shows that the one-mode
approximation for the polar angle h (which is one of the assumptions made
in previous work [3]) is fairly accurate for both, the UP1 and UP2 regime.
Adding higher modes on the polar angle h does in our approach not give an
appreciable change in the dynamical picture. However, the simple model
introduced in [3] cannot predict the NUP regime. Recently the NUP regime
was studied experimentally and theoretically [4,5] without, however,
resolving the detailed bifurcation structure.

We have explored the three types of the director instabilities in detail.
With increasing light intensity, the first instability corresponds to the tran-
sition from the homeotropic orientation to a state where the director per-
forms a uniform precession around the direction of propagation of the light.
This state destabilizes via a supercritical Hopf bifurcation and a new fre-
quency f1 in the Fourier spectra of the director and of the output intensities
appears. This regime corresponds to nonuniform director precession with
nutation. As the intensity increases further, this state disappears at a cer-
tain critical value. At this intensity the period of nutation T ¼ 1=f1 becomes
infinite and a discontinuous transition to a state with large reorientation
occurs via a homoclinic bifurcation. The new state again corresponds to
a uniform precession of the director, however, with very large period.
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