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Abstract

A theory for ultrashort pulse generation in cw solid-state lasers with a ‘slow’ semiconductor saturable absorber in the
presence of self-phase modulation in the active medium and absorption linewidth enhancement in the semiconductor has
been developed. It was shown that with increase of pump energy the laser switches from stable ultrashort pulse generation to
bistable operation regime. The parameters for stable ultrashort pulse generation were found. q 1999 Elsevier Science B.V.
All rights reserved.
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1. Introduction

Over the past few years a considerable progress has
been made in femtosecond solid-state lasers. It was con-
nected mainly to exploitation of the fast electronic nonlin-

w xearity, which causes Kerr lensing 1 and has a response
time of the order of few femtoseconds. On the other hand,
an efficient mode-locking in the femtosecond time domain
has been achieved with semiconductor saturable absorbers
w x2–4 . The fastest excitation decay time T of the semicon-a

ductor absorbers used in the experiments was approxi-
mately 100 fs, which according to the ordinary theory of
passive mode-locking prevents ultrashort pulse generation
with duration of tens of femtoseconds. To explain the
extremely short pulse generation, a soliton mode-locking

w xmechanism has been proposed 5 . This mechanism in-
volves the combined action of the group velocity disper-

Ž .sion GVD and the fast nonlinear refraction producing
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Ž . w xself-phase modulation SPM . Kartner et al. 5 noted also¨
that the ‘slow’ nonlinear refraction in the semiconductor

Ž .absorber so-called linewidth enhancement can stabilize
an ultrashort pulse.

It is known that the semiconductor structures used as
passive modulators possess an extremely high nonlinearity,
which depends on the carrier density and, consequently, on

Ž w x.the pulse energy see, for example, Ref. 6 . This produces
a strong energy-dependent SPM, which is proportional to
the loss coefficient. The corresponding coefficient of pro-

Ž . w xportionality Henry’s factor is about y3 to y8 7,8 .
Here we present a theory for ultrashort pulse generation

in cw solid-state lasers in the presence of fast nonlinear
refraction in the active medium and carrier density-depen-
dent SPM in the semiconductor absorber. As we shall
demonstrate later on, the last factor essentially transforms
the pulse characteristics and can stabilize an ultrashort
pulse against automodulational instability. Also absorber
linewidth enhancement produces negative feedback, that
leads to multistable operation. One should note the differ-

w xence from an existing theory 5 , where quasi-Schrodinger¨
laser solitons were studied.
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2. Discussion

w xBased on the self-consistent field theory 9 and taking
into account the gain, saturable loss in the semiconductor,
frequency filtering, GVD and SPM, we arrive at the master
equation:

y1E a k ,t 1q ix EŽ .
s ayG exp y ´ 1qž /½ ž /E k U E ta

y1 2E E
2< <q 1q y1 y lq id y ib a2ž /E t E t

qif a k ,t , 1Ž . Ž .5
Ž .where a k,t is the field, k is the transit number, t is the

local time, a is the dynamically saturated gain, G is the
initial loss of the absorber, x is the Henry factor, U is thea

t < Ž X. < 2 Xsaturation energy of the absorber, ´sH a k,t d t is thet0

Žpulse energy t is the time moment corresponding to the0
.pulse peak , l is the linear loss, d is the GVD coefficient,

b is the SPM coefficient of the active medium, f is the
phase delay after the full round trip. The term in square

Žbrackets describes the frequency filter. Operator 1q
.y1ErEt is effective only with respect to the field a, not to

Ž .the energy ´ . In Eq. 1 all times are normalized by the
inverse filter bandwidth t . For simplicity, we assume anf

equal bandwidth for the loss and frequency filter and
neglect the gain dispersion.

Ž .An expansion of Eq. 1 into a series in energy ´

accounting for the dynamical loss and gain saturation by
pulse energy yields:

2
E a k ,t t´Ž . Ž .

s a 1yt´q y lyg0 0½ ž /E k 2

´ 2

yg 1q ix y´Ž .0 ž /2

E
y 1yg 1y´Ž .Ž .0

E t

E 2 E 2

q 1yg q idŽ .0 2 2E t E t

E
2< <yixg ´ q ify ip a k ,t a k ,t , 2Ž . Ž . Ž .0 5E t

where a and g are the saturated gain and the saturated0 0
Ž .loss at the pulse peak, respectively. In Eq. 2 the pulse

energy is normalized by the saturation energy of the
absorber U , t is the ratio of the loss saturation energy toa

Žthe gain saturation energy taking into account the mode
.cross-sections at the absorber and at the active medium ,

psbU rt . In order to derive an exact steady-state solu-a f
Ž .tion of Eq. 2 , we neglected the higher-order terms

Ž 2 . 0Ž . Ž 2 . Ž 2 2. Ž 2 2.´ r2 g ErEt , g ´y´ r2 E rEt , ixg ´ E rEt ,0 0
2Ž 2 2.ixg ´ ErEtyE rEt r2. The correctness of this approx-0

imation was checked by applying a perturbation theory
analysis.

Fig. 1. The resonators configuration for passive mode-locking with semiconductor absorber. M are the mirrors, the curvature radius of1,2,3,4

the folding mirrors is 10 cm.
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Ž .The soliton-like solution of Eq. 2 is

1qic w xa k ,t sa sech tykd rt exp iv t , 3Ž . Ž . Ž .0 p

where a is the pulse amplitude, d is the round-trip delay0

so that t skd , t is the pulse duration, v is the fre-0 p

quency shift from the gain center. Substitution of the
Ž . Ž .expression 3 into 2 gives a set of six algebraic equa-

tions. As the solution is quite clumsy, we write here only
the expression for the pulse duration:

1yg ydc0
t s .p 2 2(a yg yv qg v0 0 0

To relate the parameters of our model to those available
in the experiment, we have to recalculate the saturated loss
at pulse peak g with respect to the initial saturable loss0

G : g sG eyEr2 assuming that the loss recovery time is0

much shorter than the cavity period T and much longercav
` < < 2than the pulse duration. Here EsH a d t is the fully`

pulse energy. Although in typical femtosecond lasers, the
gain saturation energy is much larger than the loss satura-

Žtion energy in our calculations ts0.0015, which corre-
sponds to the loss saturation fluence of 100 mJrcm2 and
Ti:sapphire active medium with the beam radius at the
active medium of 30 mm, and at the absorber of 106 mm,

.see Fig. 1 , our calculations have shown that the balance
between these two factors noticeably affects ultrashort
pulse parameters. Accounting for the gain saturation is
performed as follows:

1yexp yUŽ .
a sa exp yt Er2 ,Ž .0 m 1yexp yUyt EŽ .

where U is the pump intensity normalized by s T rhn ,14 cav

hn is the pump photon energy, s is the absorption14

cross-section of the active medium, a is the gain at fullm

Fig. 2. Pulse chirp x versus pump power P for different linewidth
Ž . Ž . Ž .enhancement factors: x s0 1 , y0.005 2 , y0.05 3 , y2.5

Ž .4 . Every parameter set has two solutions. Stable solutions are
plotted by solid lines. GVD coefficient is y360 fs2, G s0.05,
ls0.05, a s1.5, ps3.m

Fig. 3. Pulse frequency shift v versus pump power P for
different linewidth enhancement factors and GVD coefficients:

Ž . Ž . Ž . Ž . 2x s0 1 , y0.005 2 , y0.05 3 , y2.5 4,5 ; dsy360 fs
Ž . 2 Ž .1–4 , y90 fs 5 . Other parameters are as in Fig. 2. Stable
solutions are plotted by solid lines. To better illustrate the behav-

Ž . Ž .ior of the curves the plot is divided into parts a and b .

inversion, T is the gain recovery time normalized by T .cav

This equation gives an additional condition for determin-
ing the pulse parameters.

ŽAs our analysis showed, in the absence of SPM ps0
Ž ..in Eq. 2 there is strong domination of slow loss satura-

tion over gain saturation, which is the case for solid-state
lasers, the range of pump powers that provides femtosec-
ond pulse generation is very small and, as was shown in

w xRef. 5 , the pulse is unstable against laser noise.
ŽThe presence of SPM in the active medium p/0 in

Ž ..Eq. 2 transforms the situation essentially. There appear
Žtwo different solutions Fig. 2, curves 1, where the solid

.lines denote a stable solution . The difference in the nature
of these two solutions is explained by contribution from

Ž .different pulse-forming mechanisms: 1 Schrodinger soli-¨

Fig. 4. Pulse duration t versus pump power P for differentp
Ž .linewidth enhancement factors and GVD coefficients: x s0 1 ,

Ž . Ž . Ž . 2 Ž .y0.005 2 , y0.05 3 , y2.5 4,5 ; dsy360 fs 1–4 , y90
2 Ž .fs 5 . Other parameters are as in Fig. 2. Stable solutions are

plotted by solid lines.
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ton mechanism, producing a chirp-free pulse with zero
Ž . Ž .frequency shift and 2 ‘laser’ dissipative mechanism,

producing essentially a chirped quasi-soliton with nonzero
Ž .frequency shift curves 1, Fig. 3a . Both solutions have a

minimum in duration for certain pump power and GVD
Ž .Fig. 4, curves 1 and nearly linear dependence of the

Ž .energy on the pump power Fig. 5, curves 1 .
Even a small energy-dependent nonlinear refraction

Ž Ž ..x/0 in Eq. 2 ‘mixes’ these two states, so that chirp
compensation is possible only for relatively large pump
Ž .Fig. 2, curves 2, 3 and for the shortest pulse the chirp

Ž .remains uncompensated Fig. 4, curves 2, 3 . The main
features in the pulse parameters’ behavior in the presence
of linewidth enhancement are broadening of the pump
power region where ultrashort pulse generation is possible
Ž .the growth of the maximal pump power and increase of
the Stokes shift of the pulse carrier frequency. The latter
factor produces a negative feedback due to the shift of the
pulse spectrum from the gain band that decreases the pulse

Ž .energy for large pump powers Fig. 5, curve 3 and
broadens the region of pulse existence.

< <Further increase of x up to the magnitude typical for
semiconductor absorbers increases the Stokes shift of the

Ž .pulse Fig. 3b, curves 4 , so that a transform limited pulse
exists for fixed GVD, only for some definite pump power
Ž .Fig. 2, curves 4 . Strong negative feedback due to the
frequency shift produces a negative slope in the depen-

Ždence of the pulse energy on pump power Fig. 5, curves
. < <3–5 . With decrease of d , the difference between pulse

durations corresponding to the different branches of the
Ž .solutions increases Fig. 4, curves 5 . The stable branch

Ž .demonstrates dramatic growth up to picosecond level of
the pulse duration under small pump power variation.

The regions of pulse existence are shown in Fig. 6. It is
Ž .seen Fig. 6a that for fixed pump an optimal x exists,

which provides the broadest one in terms of GVD region
of pulse existence. The regions of pulse existence are very

Fig. 5. Pulse energy fluence E versus pump power P forout

different linewidth enhancement factors and GVD coefficients:
Ž . Ž . Ž . Ž . 2x s0 1 , y0.005 2 , y0.05 3 , y2.5 4, 5 ; dsy360 fs

Ž . 2 Ž .1–4 , y90 fs 5 . Other parameters are as in Fig. 2. Stable
solutions are plotted by solid lines.

Ž .sensitive to the pump power Fig. 6b . The lowest thresh-
old of pump powers necessary for ultrashort pulse genera-

Žtion is provided by some small negative GVD fy200
2.fs , where negative feedback is minimal and the pulse

formation is due to the soliton mode-locking mechanism.
However, as we shall demonstrate later on, this regime is
not optimal for pulse stabilization.

Now we have to investigate the stability of the quasi-
soliton. The stability against small perturbations of the

Žpulse parameters i.e., amplitude, duration, frequency shift,
.chirp and energy is considered. Substituting the perturbed

Ž . Ž .solution 3 into Eq. 2 and expanding it into a series in
time, we obtain a set of equations set for the evolution of
the pulse parameters:

da0 2sa a yg y lyv 1ygŽ .0 0 0 0dk

yy 1yg ydc , 4aŽ .Ž .0

dv
2 2sa g xyvycyxvc qa a ctŽ .0 0 0 0dk

2 2q2yv gc qg yc y1 , 4bŽ .Ž .0

dy
4 2 2sa g ya t q2 a g y xcy1Ž .Ž .0 0 0 0 0dk

q2y 2 3dcqc 2 qg yg cy1 , 4cŽ .Ž .0 0

dc
2 2sy2 a g xqpqg xcŽ .0 0 0dk

a4
0 2q g xyg cqa t xŽ .0 0 0

y

q2y g c 2 qcg y2 dc 2yc 2 y2 d , 4dŽ .Ž .0 0

where ys1rt2.p

Stability analysis for the energy perturbation follows
w x Ž .the scheme presented in Ref. 10 : integration of Eq. 2

and summing up with its complex conjugate gives the
pulse energy conservation law. From this integral of mo-
tion, the condition for the decay of the perturbation of the
pulse energy follows:

ya t et Er2 1qeyt E q lqG 1qeyEŽ . Ž .0

'2 y
2 2y 1yg 1qc q3v ryŽ . Ž .03

2
2y g a xcy1 -0. 5Ž . Ž .0 03

Here we assumed that the loss and gain saturation obey an
exponential law, which is the case for a quasi-two-level
system with a relaxation time much longer than the pulse
duration.

Ž . Ž . Ž . Ž .The Jacobian of the set of Eqs. 4a , 4b , 4c , 4d and
Ž .5 determines the condition for pulse stability against

Ž .automodulational instabilities. It is seen from Eqs. 4a and
Ž .5 , that the frequency shift, chirp and spectral filtering
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Ž . Ž . Ž . Ž .Fig. 6. Regions of pulse existence. A Region of instability, B automodulational stability, C stability against noise, D automodulational
Ž . Ž . Ž .and noise stability on the plane GVD–pump . xs0 a , y2.5 b .

Ž Ž ..fourth term in Eq. 5 stabilize the pulse against energy
Ž Ž .and amplitude perturbations, ‘slow’ first term in Eq. 4b

Ž .. Žand second term in Eq. 4d and ‘fast’ first term in Eq.
Ž ..4d SPM stabilize the pulse against frequency and chirp
perturbations. This stabilization is provided by negative
feedback due to pulse chirping and frequency shift in the
presence of finite gain and filter bandwidth.

Besides automodulational instabilities, there is another
source of pulse destabilization, namely, laser continuum
Ž . w xnoise . As was shown in Ref. 11 , the main mechanism
of laser noise suppression in this case is the difference in
group velocities for the pulse and noise which produces a
permanent walk-off of the noise out of the window of
positive net-gain while the pulse matches it perfectly.
Evolution of cw-noise N obeys the following equation:

d N k ,t E VŽ .
yt Er2s a e y lyVyd N k ,t , 6Ž . Ž .0½ 5dk E t

Ž Ž yE . ytr Ta .where VsG 1q e y1 e is the ‘potential’ cre-
ated by the pulse, the derivative describes the time shift of

Ž .the noise with respect to the pulse. From Eq. 6 the
condition for the noise energy decay follows:

d
yt Er2 yE yEa e y lyG e y G 1ye -0. 7Ž . Ž .0 Ta

Ž .The solutions of Eq. 2 which are stable against auto-
modulational instabilities are shown in Figs. 2–5 by solid
lines. It should be noted that the soliton mode-locking
mechanism does not work over the full region of pulse

existence which is evidenced by essentially nonzero chirp
of the pulse. As it is seen from Figs. 2–5, a relatively large
nonlinear refraction in the semiconductor causes bistable

Ž .operation: there are two stable solutions curves 4 that
exist simultaneously around pump power of 4 W. One of

Ž .these solutions has a smaller chirp Fig. 2 , larger Stokes
Ž . Ž .shift Fig. 3b , shorter duration Fig. 4 and lower energy

Ž .Fig. 5 .
Negative feedback due to absorption linewidth en-

hancement stabilizes the pulse against pulse energy pertur-
bation. This is explained by the dependence of the pulse
frequency shift on the pulse energy: the increase of the
pulse energy produces a bigger frequency shift, which
makes the pulse amplification inefficient due to the bad
overlap of the pulse and gain spectrum. This prevents
further growth of the pulse energy; the opposite situation
prevents the decrease of the pulse energy. Thus, a negative

Ž .slope efficiency of the stable solution curves 4 in Fig. 5
has physical meaning.

Fig. 6 presents the regions of pulse existence. In area A
the pulse is unstable. In area B the pulse is stable against
automodulational instabilities, in area C the pulse is stable
against laser continuum and in area D the pulse is stable
against both automodulational and cw instabilities. It is
seen that in the absence of linewidth enhancement the
pulse is unstable against automodulational perturbations

Ž .due to the absence of negative feedback Fig. 6a . The
increase of the negative linewidth enhancement factor
increases the threshold of the pulse generation due to
nonlinear loss produced by pulse frequency shift, but there
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Ž .Fig. 7. Pulse duration t versus GVD d in the presence trianglesp
Ž . Ž .and in the absence circles of slow SPM. Numerical modeling.

appears a region of automodulational stability which arises
Ž .due to the ‘slow’ SPM in the semiconductor Fig. 6b . This

is accompanied by pulse shortening down to the shortest
possible duration t and the region where the pulse isf

Ž .stable against both types of instabilities area D in Fig. 6b .
For the most interesting region of the system’s parame-

ters, where relatively small negative GVD provides pulse
durations close to the shortest possible, we performed a
numerical simulation. A three-level scheme was used for
modeling the amplitude of the semiconductor absorber
with 100 fs fast relaxation component and 1 ps slow
relaxation component. The saturation energy fluence was
taken to be 2 mJrcm2, other parameters were ps6,
t s3 fs, Gs0.05, Us0.004. In order to guarantee af

good convergence of numerical procedure, we have chosen
xsy0.1. However, even such small x can stabilize an

< < Ž .ultrashort pulse in the region of small d Fig. 7 . Pulse
Ž . Ž .duration versus GVD without circles and with triangles

linewidth enhancement in the semiconductor is presented
in Fig. 7. As is seen, a nonzero x shifts the region of pulse

Žexistence into the positive direction of GVD by approxi-
2.mately 100 fs in comparison to the situation with xs0,

the pulse duration being reduced from f13 to 9 fs. A
distinctive feature of the contribution of slow nonlinear
refraction is the generation of stable and extremely short
pulses in the region of small positive GVD.

3. Conclusion

We have demonstrated the influence of absorption
linewidth enhancement in a semiconductor on the ultra-
short pulse characteristics in solid-state lasers. The
linewidth enhancement introduces a negative feedback that
stabilizes the pulse. The region of pulse stability is much
wider in this case than in the case of the soliton stabiliza-
tion mechanism. At low pump powers and low negative
GVD a dramatic growth of the pulse duration is observed.
Bistable operation for large pump powers is possible, too.
Numerical simulation showed pulse shortening due to
linewidth enhancement compared with usual soliton
mode-locking for small negative GVD. The advantage of
the mode-locking mechanism described above is the opera-
tion without Kerr-lensing, which is very attractive for
diode-pumped cavity alignment in sensitive systems with
large mode cross-section.
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