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Interaction-induced fractional Bloch and tunneling oscillations
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We study the dynamics of few interacting bosons in a one-dimensional lattice with dc bias. In the absence of
interactions the system displays single-particle Bloch oscillations. For strong interaction the Bloch oscillation
regime re-emerges with fractional Bloch periods which are inversely proportional to the number of bosons
clustered into a bound state. The interaction strength affects the oscillation amplitude. Excellent agreement is
found between numerical data and a composite particle dynamics approach. For specific values of the interaction
strength, a particle will tunnel from the interacting cloud to a well-defined distant lattice location.
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Bloch oscillations [1] in dc biased lattices are due to
wave interference and have been observed in a number of
quite different physical systems: atomic oscillations in Bose-
Einstein condensates (BECs) [2], light intensity oscillations
in waveguide arrays [3], and acoustic waves in layered and
elastic structures [4], among others.

Quantum many-body interactions can alter the above
outcome. A mean-field treatment makes the wave equations
nonlinear and typically nonintegrable. For instance, for many
atoms in a Bose-Einstein condensate, a mean-field treat-
ment leads to the Gross-Pitaevsky equation for nonlinear
waves. The main effect of nonlinearity is to deteriorate
Bloch oscillations, as recently studied experimentally [5] and
theoretically [6–8].

In contrast, we explore the fate of Bloch oscillations for
quantum interacting few-body systems. This exploration is
motivated by a recent experimental advance [9] in monitoring
and manipulating few bosons in optical lattices. Few-body
quantum systems are expected to have finite eigenvalue
spacings, consequent quasiperiodic temporal evolution, and
phase coherence. In a recent report on interacting electron
dynamics, spectral evidence for a Bloch frequency doubling
was reported [10]. On the other hand, it was also recently
argued that Bloch oscillations are effectively destroyed for
few interacting bosons [11].

In this Brief Report, we show that for strongly interacting
bosons a coherent Bloch oscillation regime re-emerges. If the
bosons are clustered into an interacting cloud at time t = 0,
the period of Bloch oscillations will be a fraction of the period
of the noninteracting case, scaling as the inverse number of
interacting particles (Fig. 1). The amplitude (spatial extent) of
these fractional Bloch oscillations decreases with increasing
interaction strength. For specific values of the interaction, one
of the particles leaves the interacting cloud and tunnel for
a possibly distant and well-defined site of the lattice. For
few particles, the dynamics is always quasiperiodic, and a
decoherence similar to the case of a mean-field nonlinear
equation [7] does not take place.

We consider the Bose-Hubbard model with a dc field:

Ĥ =
∑

j

[
t1(b̂+

j+1b̂j + b̂+
j b̂j+1) + Ejb̂+

j b̂j + U

2
b̂+

j b̂+
j b̂j b̂j

]
,

(1)

where b̂+
j and b̂j are standard boson creation and annihilation

operators at lattice site j , the hopping t1 = 1, and U and E are
the interaction and dc field strengths, respectively. To study
the dynamics of n particles, we use the orthonormal basis of
states |k〉 ≡ |k1,k2, . . . ,kn〉 = b+

k1
b+

k2
· · · b+

kn
|0〉, where |0〉 is the

zero-particle vacuum state, and k1 � k2 � · · · � kn are lattice
site indices (for instance, in the case of two particles the state
representation is mapped to the triangle). The eigenvectors |ν〉
of Hamiltonian (1) with eigenvalues λν are then given by

|ν〉 =
∑

k

Aν
k|k〉, Ĥ|ν〉 = λν |ν〉, (2)

where the eigenvectors Aν
k ≡ 〈k|ν〉 and the time evolution of

a wave function |�(t)〉 is given by

|�(t)〉 =
∑

ν

�νe
−iλν t |ν〉, �ν ≡ 〈ν|�(0)〉. (3)

FIG. 1. (Color online) Time evolution of the probability density
function Pj (t) for the interaction constant U = 3 and dc field E =
0.05 and different particle numbers initially occupying a single site at
t = 0. (a) One-particle Bloch oscillations with the conventional Bloch
period 2π/E, and (b) two-, (c) three-, and (d) four-particle oscillations
with periods 2π/(2E), 2π/(3E), and 2π/(4E), respectively.
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We monitor the probability density function (PDF) Pj (t) =
〈�(t)|b̂+

j b̂j |�(t)〉/n, which can be also computed using the
eigenvectors and eigenvalues:

Pj (t) = 1

n

∑
ν,µ

�ν�
∗
µei(λµ−λν )t 〈µ|b̂+

j b̂j |ν〉. (4)

In Fig. 1 we show the evolution of Pj (t) for U = 3, E = 0.05,
and n = 1,2,3,4 with initial state k1 = k2 = · · · = kn ≡ p, that
is, when all particles are launched on the same lattice site p.
For n = 1 we observe the usual Bloch oscillations with period
T = 2π/E [Fig. 1(a) and below]. Due to the small value of
E, the amplitudes of oscillations are large. However, with
increasing number of particles, we find that the oscillation
period is reduced according to 2π/(nE), and at the same time
the amplitude of oscillations is also reduced.

In the one-particle case, for n = 1 the interaction term in
Eq. (1) does not contribute. The eigenvalues λν = Eν (where
ν is an integer) form an equidistant spectrum which extends
over the whole real axis: the Wannier-Stark ladder. The cor-
responding eigenfunctions obey the generalized translational
invariance A

ν+µ

k+µ = Aν
k [1] and are given by the Bessel function

Jk(x) of the first kind [12,13]:

Aν
k = J ν

k ≡ Jk−ν(2/E). (5)

All eigenvectors are spatially localized with an asymptotic
decay |A0

k→∞| → (1/E)k/k!, giving rise to the well-known
localized Bloch oscillations with period TB = 2π/E. The
localization volume L of a single-particle eigenstate charac-
terizes its spatial extent. It follows that L ∝ −[E ln E]−1 for
E → 0 and L → 1 for E → ∞ [7]. For E = 0.05 the single
particle oscillates with amplitude of the order of 2L ≈ 160
[Fig. 1(a)]. According to Eqs. (4) and (5), the probability
density function is given by

Pj (t) =
∑
ν,µ

J ν
pJµ

p J ν
j J

µ

j eiE(µ−ν)t . (6)

In the two-particle case (n = 2), for U = 0 the eigenfunc-
tions of the Hamiltonian (1) are given by tensor products of
the single-particle eigenstates:

|µ,ν〉 =
√

2 − δµ,ν

2

∑
k,j

J
µ

k J ν
j b̂+

k b̂+
j |0〉, µ � ν. (7)

The corresponding eigenvalues form an equidistant spectrum
which is highly degenerate:

Ĥ|µ,ν〉 = (µ + ν)E|µ,ν〉. (8)

For the above initial condition k1 = k2 ≡ p, the expression for
the PDF (6) is still valid (as it actually is for any number of
noninteracting particles) with the same period 2π/E of Bloch
oscillations as in the single-particle case.

For nonvanishing interaction, the degeneracy of the spec-
trum is lifted, and the eigenvalues of overlapping states
are no longer equidistant (Fig. 2). Therefore, we observe
quasiperiodic oscillations which, however, are still localizing
the particles. For even larger values of U , the basis states
with two particles on the same site shift their energies by
U exceeding the hopping 2t1. Therefore, for U > 2t1, the
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FIG. 2. (Color online) Eigenvalue spectrum for n = 2, E = 0.5,
and different interaction constants U . The eigenvalues are displayed
only for eigenvectors localized in the center of the lattice (we select
the 32 eigenstates which overlap most strongly with the center of
the lattice). (a) U = 0: the spectrum is equidistant with spacing E

and degenerate. (b) U = 2: the degeneracy is lifted. (c) U = 15:
the spectrum decomposes into two subspectra, with two different
equidistant spacings, E and 2E. (d) Eigenvalue spectrum of the 32
central eigenfunctions as a function of U .

spectrum is decomposed into two nonoverlapping parts: a
noninteracting one which excludes double occupancy and
has equidistant spacing E, and an interacting part which is
characterized by almost complete double occupancy and has
corresponding equidistant spacing 2E, which is the cost of
moving two particles from a given site to a neighboring site.
Some initial state can overlap strongly with eigenstates from
one or the other part of the spectrum and, therefore, result in
different Bloch periods. In particular, when launching both
particles on the same site, one strongly overlaps with the
interacting part of the spectrum and a fractional Bloch period
2π/(2E) is observed.

In order to calculate the amplitude of these fractional
Bloch oscillations, we note that for E = 0 there exists a two-
particle bound-state band of extended states with bandwidth√

U 2 + 16 − U [14]. For large U , the bound states are again
almost completely described by double occupancy. Therefore,
we can construct an effective Hamiltonian for a composite
particle of two bound bosons:

Ĥ ≈
∑

j

[t2(R̂+
j+1R̂j + R̂+

j R̂j+1) + 2EjR̂+
j R̂j ], (9)

where R̂+
j and R̂j are creation and annihilation operators at

lattice site j of the composite particle (two bosons on the same
site) with the effective hopping

t2 =
√

U 2 + 16 − U

4
. (10)

The corresponding PDF is given by

Pj (t) =
∑
ν,µ

Aν
pAµ

pAν
jA

µ

j ei2E(µ−ν)t . (11)
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FIG. 3. (Color online) Top: PDF for E = 0.1, n = 2, single-site
initial occupancy, and different interaction constants. For U = 0,
we find single-particle Bloch oscillations. For U = 4, fractional
Bloch oscillations take place, in agreement with Eq. (11). Bottom:
probability density of the evolved wave function (darker regions
correspond to larger probabilities) after one half of the respective
Bloch period. For U = 0, the two particles are with equal probability
close to each other and at maximal separation. For U = 4, the
two particles avoid separation and form a composite particle which
coherently oscillates in the lattice. In the bottom graphs we use
triangle k < m mapping for indistinguishable two-particle state
representation (index m increases from the right to the left).

The composite particle eigenvectors Aν
p = Jν−p[2t2/(2E)]

are again expressed through Bessel functions, but with a
modified argument as compared to the single-particle case.
Bloch oscillations evolve with fractional period 2π/(2E) as
observed in Fig. 1(b). The amplitude of the oscillations is
reduced with increasing U since the hopping constant t2 is
reduced (Fig. 3). For U = 3 it follows that t2 = 0.5, and
together with the doubled Bloch frequency the localization
volume should be reduced by a factor of 4 as compared to
the single-particle case. This is precisely what we find when
comparing Figs. 1(a) and 1(b): for n = 1, the amplitude is
160 sites, while for n = 2 it is 40 sites. In the bottom plots in
Fig. 3, we show the probability density of the wave functions
|〈�(t)|k〉|2 after one half of the respective Bloch period in the
space of the two-particle coordinates with k1 = k and k2 = m.
For U = 0, both particles are with high probability at a large
distance from each other. Therefore, the density is large not
only for k = m (the two particles are at the same site) but
also for k = 5, m = 85 (the two particles are at maximum
distance). However, for U = 4, we find that the two particles,
which initially occupy the site p = 45, do not separate, and the
density is large only along the diagonal k = m with 35 � k �
55. (For U = 4, the localization volume is ∼20.) Therefore,
the two particles indeed form a composite state and travel
together.

For the n-particle case, we proceed in a manner similar to
the case for n = 2 and estimate perturbatively the effective
hopping constant for a composite particle of n bosons. For
that we use the calculated width of the n-particle bound-
state band for E = 0 [14]. In leading order of 1/U , it

reads [14]

tn � n

Un−1(n − 1)!
. (12)

For n = 2, the above expression gives t2 � 2/U , the first
expansion term of the exact relation for two bosons [Eq. (10)].
The corresponding composite particle Hamiltonian is

Ĥ ≈
∑

j

[tn(R̂+
j+1R̂j + R̂+

j R̂j+1) + nEjR̂+
j R̂j ]. (13)

The PDF is given by

Pj (t) =
∑
ν,µ

Aν
pAµ

pAν
jA

µ

j einE(µ−ν)t , (14)

and the composite particle eigenvectors Aν
p =

Jν−p[2tn/(nE)]. Bloch oscillations evolve with fractional
period 2π/(nE) as observed in Figs. 1(c) and 1(d). The
amplitude of the oscillations is reduced with increasing U

since the hopping constant tn is reduced. For U = 3 and
n = 3, it follows that t3 = 0.17, and for n = 4 we have
t4 = 0.01. This leads to reduction factors of 18 and 400,
respectively, as compared to the single-particle amplitude,
and yields amplitudes of the order of 9 and 0.5, respectively,
which is in good agreement with the numerically observed
amplitudes (10 and 2 sites, respectively) in Figs. 1(c) and 1(d).

With respect to tunneling oscillations, for n = 1, the
amplitude of Bloch oscillations is less than one site if E �
10 [7]. Thus, for n � 2 and increasing values of U , the
amplitude of fractional Bloch oscillations is less than one
site if EUn−1(n − 1)! � 10. Then, n particles launched on
the same lattice site p are localized on that site for all times.
The energy of that state is n((n − 1)U/2 + pE). However, if
one particle is moved to a different location with site q, then
the energy would change to (n − 1)((n − 2)U/2 + pE) + qE.
For specific values of U , these two energies are equal:

(n − 1)U = dE, d = q − p. (15)

In such a case, one particle leaves the interacting cloud at
site p and tunnels to site q at distance d from the cloud, then
tunnels back, and so on, following an effective Rabi oscillation
scenario between the states |p,p〉 and |p,q〉. This process
appears as an asymmetric oscillation of a fraction of the cloud
either up or down the field gradient (depending on the sign
of U ). We calculate the tunneling splitting of these two states
using higher-order perturbation theory; for an example, see
Ref. [15]. The tunneling time is then obtained as

τtun � π√
n
Ed−1(d − 1)!. (16)

In order to observe these tunneling oscillations,
we compute the time-averaged second moment m2 =∑

j j 2Pj (t) − [
∑

j jPj (t)]2 of the PDF P . Then an effective
time-averaged volume of the interacting cloud is taken to be
L = √

12m2 + 1. We launch n = 2 particles at site p = 40
and plot the ratio L(U )/L(U = 0) in Fig. 4 (solid blue line).
We find pronounced peaks at U = E, 2E, 3E, and 4E,
which become sharper and higher with increasing value of
U . As a comparison we also compute the same ratio for the
initial condition when both particles occupy neighboring sites
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FIG. 4. (Color online) Time-averaged and normalized localiza-
tion volume L of the wave packet which emerges from two initial
distributions as a function of U for E = 5. Dark (red) curve: two
particles are launched on the same site. Light (orange) curve: two
particles are launched on adjacent sites. Inset: PDF for U = 19.79,
with clearly observed tunneling oscillations.

(dashed red line), for which the resonant structures are absent.
According to the above discussion, the resonant structures
correspond to a tunneling of one of the particles to a site

at distance d = 1,2,3,4. The width of the peaks is inversely
proportional to the tunneling time τtun, and the height increases
linearly with the tunneling distance d. In the inset in Fig. 4,
we plot the time evolution of the PDF Pj for U = 19.79.
We observe a clear tunneling process from site p = 40 to
site q = 44. The numerically observed tunneling time is
approximately 1730 time units, while our above prediction
(16) yields τtun ≈ 1666, in very good agreement with the
observations.

The above findings can be useful for control of the dynamics
of interacting particles. They can be also used as a testbed of
whether experimental studies deal with quantum many-body
states. One such testbed is the observation of fractional Bloch
oscillations; another one is the resonant tunneling of a particle
from an interacting cloud. An intriguing question is the way
these quantum coherent phenomena disappear in the limit of
many particles, where classical nonlinear and nonintegrable
wave mechanics are expected to take over.
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