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Interaction-induced connectivity of disordered two-particle states
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We study the interaction-induced connectivity in the Fock space of two particles in a disordered one-
dimensional potential. Recent computational studies showed that the largest localization length ξ2 of two
interacting particles in a weakly random tight-binding chain is increasing unexpectedly slow relative to the
single-particle localization length ξ1, questioning previous scaling estimates. We show this to be a consequence
of the approximate restoring of momentum conservation of weakly localized single-particle eigenstates, and
disorder-induced phase shifts for partially overlapping states. The leading resonant links appear among states
which share the same energy and momentum. We substantiate our analytical approach by computational studies
for up to ξ1 = 1000. A potential nontrivial scaling regime sets in for ξ1 ≈ 400.
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Introduction. For decades, the interplay between Anderson
localization [1] and many-body interactions [2,3] has been
in the research focus of condensed matter. Most theoretical
results are not rigorous, and rely on physical intuition, indepen-
dent computational studies, and, of course, experimental data.
The case of few interacting particles seems to be an exception,
as computational approaches are expected to easily do the job
here. For two interacting particles (TIPs) in a one-dimensional
chain with weak diagonal disorder, a number of studies
over the past 20 years produced interesting yet contradicting
predictions on the scaling of the largest two-particle local-
ization length ξ2 ∼ ξα

1 with the single-particle localization
length ξ1. These range from α = 2 [4,5], α = 1.6 [6], to
α = 1 [7,8], thus from the existence of a second length scale
(α > 1) to the nonexistence of such a scale (α = 1). Recent
computational studies of the TIP eigenstates [9] show that
down to the weakest disorder values accessed by numerical
diagonalizations [10–13], the largest TIP localization length
is ξ2 � 2ξ1 [9]. Therefore, the above scaling predictions are
not supported by published numerical results. In another
recent study, a surprising TIP wave-packet subdiffusion on
length scales ξ1 � l � ξ2 has been found for ξ1 as large as
ξ1 ≈ 400 [14], further fueling the quest to understand the TIP
dynamics at weak disorder.

In this Rapid Communication, we address the intrinsic
reasons for the listed discrepancies. We focus on the single-
particle eigenstates (SPEs) and compute overlap integrals and
connectivities in the Fock space of two-particle eigenstates
(TPEs) at zero interaction. We show that, contrary to previous
assumptions, the overlap integrals show a highly inhomoge-
neous distribution at weak disorder. SPEs gradually restore
standing wave phase relations that occur in the tight-binding
model without disorder, W = 0 [15], leading to approximate
momentum conservation selection rules in the overlap inte-
grals. At the same time, strongly connected TPEs have to
satisfy approximate energy conservation. Large connectivities
set in at previously unexpected low values of disorder, because
of the combined action of momentum restoring and relative
spatial shifts of the SPEs on the phase relations between
interacting TPEs. We arrive at the surprising conclusion that
the rigorous diagonalization of TIPs in the regime of strong

connectivity is a matter of future computations, as present
CPUs are hardly capable of doing the job. Note that the
model considered here can be experimentally realized in
two-dimensional waveguide arrays [16–18].

Model. We consider the one-dimensional Hubbard Hamil-
tonian with disorder,

Ĥ ≡ Ĥ0 + Ĥint, (1)

Ĥ0 =
∑

l

[εlâ
+
l âl + â+

l+1âl + â+
l âl+1], (2)

Ĥint =
∑

l

U

2
â+

l â+
l âl âl , (3)

and two indistinguishable bosons. All energy scales are relative
to the hopping strength in Eq. (2), which is equal to unity.

The Hamiltonian (1) consists of noninteracting and in-
teracting parts, Ĥ0 and Ĥint, where â+

l and âl are standard
boson creation and annihilation operators on a lattice site
l and U measures the interaction strength. The random
uncorrelated on-site energies εl are chosen uniformly from the
interval [−W/2,W/2], with W denoting the disorder strength.
The following results are not expected to change for other
distributions with similarly finite moments.

One particle. In this case the interaction term does not
contribute. Using the basis |l〉 ≡ a+

l |0〉 with l = 1, . . . ,N (N
is the number of lattice sites), the SPEs |ν〉 = ∑N

l A
(ν)
l |l〉 are

defined through the localized eigenvectors A
(ν)
l ∼ e−|l|/ξν

1 [1]
of the eigenvalue problem

λνA
(ν)
l = εlA

(ν)
l + A

(ν)
l+1 + A

(ν)
l−1. (4)

The eigenvalues −2 − W/2 � λ � 2 + W/2 fill a band with
a width �1 = 4 + W . The most extended SPEs correspond to
the band center λ = 0 with localization length

ξ1(λ = 0,W ) ≈ 100/W 2, (5)
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FIG. 1. (Color online) Averaged overlap integrals in log scale as a function of the Fock state |ν,μ〉 for the following reference Fock states,
from left to right: ν0 = μ0 = V/2 (center), ν0 = μ0 = 5/12 V (diagonal), μ0 = 7/12 V, ν0 = 5/12 V (antidiagonal). W = 0.5.

in the limit of weak disorder W � 4 [19]. The average volume
V which an SPE occupies is estimated to be about V ≈ 3ξ1

for weak disorder [6].
Two particles. For U = 0 we construct a complete basis of

orthonormalized two-particle eigenstates which span a Fock
space as product states of SPEs,

|μ,ν � μ〉 = |μ〉 ⊗ |ν〉√
1 + δμν

, Ĥ0|μ,ν〉 = (λμ + λν)|μ,ν〉. (6)

TIP eigenstates |q〉 of the interacting particle problem
Ĥ|q〉 = λq |q〉 can be represented in Fock space as |q〉 =∑N

ν,μ�ν φ
(q)
μν |μ,ν〉. The coefficients φ

(q)
μν satisfy the eigenvalue

problem

λqφ
(q)
μ0ν0

= λμ0ν0φ
(q)
μ0ν0

+
∑

μ,ν

2UIμ0ν0
μν φ

(q)
μν√

1 + δμ0ν0

√
1 + δμν

, (7)

where

Iμ0ν0
μν =

∑

l

A
(μ0)
l A

(ν0)
l A

(μ)
l A

(ν)
l (8)

are the overlap integrals. λμ0ν0 ≡ λμ0 + λν0 and therefore the
noninteracting case U = 0 yields an eigenenergy band with
width �2 = 2�1 [20].

It follows straight from Eq. (7) that two Fock states are
strongly (nonperturbatively) coupled if

Rμ0ν0
μν ≡

∣∣∣∣
�λμ0ν0

μν

UI
μ0ν0
μν

∣∣∣∣ < 1, (9)

where the energy mismatch is given by

�λμ0ν0
μν = |λμ0 + λν0 − λμ − λν |. (10)

For U � 1 the interaction separates two-particle bound states
with double occupancy per site off a two-particle continuum
of states with one particle per site [9,21,22]. In that case,
the bound states localize in space even stronger than the
single-particle states due to the energy separation cost to move
one particle. The remaining states form a Hilbert space of two
noninteracting spinless fermions and yield no increase in the
localization length as well (as compared to the single-particle
case). Therefore, the strongest effect the interaction can have
on increasing the localization length is for U ≈ 1, which
we will assume from here on.

It follows from (9) that a strong link is realized when the
energy mismatch �λ is small (ideally zero) and the overlap
integral I is sufficiently large. The amount of possible strong
(resonant) links from a given reference Fock state |μ0,ν0〉
is finite. Overlap integrals are exponentially small unless all
four single-particle states which define one integral I are

sufficiently close to each other in real space. Thus, a given
reference Fock state has at most approximately V 2 other
basis states which form an interaction network, from which
a resonant subset can be chosen.

Overlap integrals and energy mismatch. We first nu-
merically diagonalize the single-particle problem (4). We
choose a single-particle reference state with energy close
to zero, and determine the subset of all neighboring SPEs
in the same localization volume V . We order them with
increasing energy corresponding to increasing indices ν,μ.
The corresponding momentum can be well approximated as
pν = πν/V . The obtained two-dimensional momentum space
is used to construct interacting Fock states. Next we choose
a reference Fock state with ν0,μ0 for W = 0.5 and perform
a disorder averaging of the overlap integrals I with Fock
states with some given ν,μ. The result is shown in Fig. 1
for the reference state being at the center, the diagonal, and the
antidiagonal of the two-dimensional momentum space.

We find that the overlap integrals are predominantly
nonzero along certain straight lines. These lines follow simple
momentum conservation rules for two interacting particles in
the absence of disorder in a box of size V [23]. This happens
because in one dimension the localization length is of the
order of the mean free path [19], and for weak disorder the
quasimomenta become good quantum numbers. The eigenstate
will therefore be similar to a standing wave with exponentially
decaying tails.

These findings underpin that ν is a momentum index
for weak disorder. This is one of the reasons why previous
attempts to estimate averages of overlap integrals over the
whole momentum space were not useful [4,5].

Let us minimize the energy mismatch (10). Neglecting
disorder except for its trapping of particles, the single-particle
energy in a box can be estimated as −2 cos(p) = −2 cos π ν

V
.

Therefore, the energy mismatch is exactly zero if the condition

cos π
ν0

V
+ cos π

μ0

V
= cos π

ν

V
+ cos π

μ

V
(11)

is satisfied. It defines some curved line in {ν,μ} space. The
notable exception is the antidiagonal straight line in Fig. 1
(left and right plots) which does conserve both the energy
and the momentum. Note that this coincidence of momentum
and energy conservation for pairs of two-particle Fock states
along the antidiagonal is the result of the restoring of a
particle-hole symmetry of the considered model in the limit
of vanishing disorder. The tight-binding model is a member
of a family of models with hopping over odd distances in
real space only, which allows the introduction of bipartite AB
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FIG. 2. (Color online) Averaged overlap integrals along the an-
tidiagonal for W = 2 (upper curve) and W = 0.5 (lower curve). The
reference Fock state is at the center ν0 = μ0 = V/2.

sublattices, and results (for W = 0) in the eigenvector property
Al(λ) = (−1)lAl(−λ) [15].

We focus on the subset of Fock states along the antidiagonal
only with ν0 = μ0 = V/2 (center) and ν + μ = ν0 + μ0.
It is this tiny subset which is capable of setting up the
strongest resonant network and substantially delocalize two
interacting particles, as compared to one. We plot the variation
of the overlap integrals along the antidiagonal for W = 2
and W = 0.5 in Fig. 2. We observe a peak at the center
which corresponds to 〈I ν0ν0

ν0ν0
〉. Its value can be estimated using

normalization properties of SPEs as 〈I ν0ν0
ν0ν0

〉 ≈ 1/V . For W = 2
this yields 0.013 and for W = 0.5 it yields 0.0008, which are
reasonably close to the numerical data 0.03 and 0.002. In
particular, their ratio is 16 from the estimate and 15 from
numerics, showing that we correctly determine the scaling.
Off the peak we find a plateau at significantly reduced values
∼10−3 (W = 2) and ∼10−5 (W = 0.5). This reduction is due
to relative shifts of SPEs in real space. For weak disorder,
assume that each SPE is given by A

(ν)
l = 1√

V
e2πi(l−lν )ν/V

for lν � l � lν + V , where lν encodes the spatial position
of the SPE. The average of the overlap integral along the
antidiagonal is equivalent to averaging I

V/2,V/2
ν,V −ν over ν and

over all possible values of lν,lμ. This yields 〈Iad〉 = 3
4V 2 . The

numerical prefactor 3/4 originates from the relative shift of
flat and constant distributions along the lattice. The scaling
1/V 2, however, is due to the phase mismatch of SPEs shifted
relatively to each other. (A similar calculation for SPEs which
are not shifted relative to each other will give 〈Iad〉 = 1/V .)
This scaling is much weaker than the V −3/2 law predicted
in Refs. [4,5] because the standing wave phase correlations
were neglected. The distributions of the energy mismatch
�λ along the antidiagonal follow approximately a normal
distribution with the characteristic energy scale �1 [24], due to
the central limit theorem already at work. A quick estimate of
the probability of resonance (9) yields a number independent
of V . Therefore, fluctuations of the overlap integral values, and
their correlations to the energy mismatch, might be of decisive
importance.

FIG. 3. (Color online) Points represent those pairs of μ,ν which
satisfy the resonance condition Rμ0ν0

μν � 1 with the reference modes
μ0,ν0. Calculations are performed for W = 0.5 and different pairs of
μ0,ν0 (shown by solid circles) located at the center (left panel) and at
antidiagonal, diagonal, and arbitrary location of μ0,ν0 (right panel).

Let us turn to numerical data. In Fig. 3 we show the
observed locations of all resonant partner Fock states (R < 1)
for different reference Fock states. For a reference state
ν0 = μ0 = V/2 we nicely observe the grouping of all network
partners along the antidiagonal (Fig. 3, left plot). For another
reference state ν0 = 0.4V , μ0 = 0.6V on the antidiagonal,
the network partners still belong to the antidiagonal neigh-
borhood, and simply their number decreases (Fig. 3, right
plot). For reference states off the antidiagonal (Fig. 3, right
plot) the network partners are located close to curved lines
which are a manifestation of the single-particle dispersion
[energy conservation—see Eq. (11)], with even smaller partner
numbers. Therefore, we confirm that resonances are defined
by momentum and energy conservation.

Connectivity. A central property of any network is the
connectivity K—the number of links from a given reference
state to other partners. Values of 〈K〉 � 2 do not lead to any
substantial increase of the localization length, as there is a high
probability to terminate the path after one or two connections.
For a given pair μ0 and ν0, the connectivity K to all pairs
of modes μ and ν residing the same localization volume is
defined as the number of connections for which R fulfills
the condition (9) (if any). We evaluated its average 〈K〉 for
ν0 = μ0 = V/2: 〈K〉(W = 2) = 1.1, 〈K〉(W = 0.75) = 5.4,
〈K〉(W = 0.5) = 12, 〈K〉(W = 0.35) = 25. Therefore, the
potentially interesting regime of sufficiently large connectivity
is accessed only for W < 1. Previous diagonalization studies
were exploring 1 < W < 4. Despite the fact that V (W =
4) ≈ 20 and V (W = 1) ≈ 300, the numerically accessed pa-
rameter interval turns out to be irrelevant for the study of
a possible dramatic increase in ξ2. The reason is the above
discussed smallness in the overlap integrals which originates
from the relative shifts of SPEs with standing wave phase
relations. We note that the connectivity increase for W < 1
happens also for other choices of μ0,ν0. For instance, for
ν0 = V/4, μ0 = 3V/4 we find 〈K〉(W = 0.5) = 7.5. Still, it is
much weaker than the numbers obtained for the antidiagonal,
as shown in Figs. 4(a) and 4(b). In Fig. 4(c) we show the distri-
bution of K for W = 0.35 and two reference Fock states—for
the center and the diagonal similar to those shown in Fig. 1.

Larger values of 〈K〉 do not necessarily lead to an
enhancement of the localization length, since there can be
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FIG. 4. (Color online) Statistical properties of the coordination
number K . (a) The colored line segments perpendicular to the
antidiagonal represent the pairs of μ0,ν0 taken in the calculations.
(b) Average coordination number 〈K〉 (solid lines with symbols) for
the reference modes from the line segments in (a) (the same coloring is
kept). Here n/V measures the deviation along the line segments from
the antidiagonal. (c) PDFs W(K) for two pairs of μ0 and ν0. Dashed
lines: Corresponding binomial distributions with the same average
coordination number 〈K〉 as obtained from W(K). The strength of
disorder W = 0.35.

closed loops in the resonant network in Fock space, whose
length simply increases. The existence of loops is enforcing
a certain degree of correlations between the resonant links.
Assume the opposite, i.e., that the actual values of R < 1,
which define a set of links from a given reference state to other
Fock states, are not correlated. Then, the connectivity K must
be binomially distributed because K would be nothing more
than a number of successful events R < 1 in a sequence of L

independent tossings each of which yields success R < 1 with
probability p. Thus one expects

W(K) = L!

k!(L − k)!
pK (1 − p)L−K. (12)

Note that the average coordination number 〈K〉 for the
binomial distribution is related to p as 〈K〉 = Lp. On the

other hand, we know 〈K〉 from the numerical simulations
and therefore can easily calculate the success probability
p. We test this hypothesis. Results of the comparison of
the numerically obtained W(K) and corresponding bino-
mial distributions are shown in Fig. 4(c). We observe a
strong deviation of numerical PDFs from the binomial dis-
tributions, concluding that resonances are not completely
independent events. This might be a hint that resonant
loops in Fock space are formed, which could act against
delocalization.

Conclusions. We have shown that, contrary to previous
assumptions, a possible substantial increase in the localization
length of two interacting particles in a random potential sets
in at unexpectedly weak disorder values. This is due to a
gradual restoring of momentum conservation in single-particle
eigenstates in the limit of vanishing disorder. That, in turn,
enforces a highly inhomogeneous resonance network of matrix
elements. The scaling of the overlap integrals along the
resonant network is much weaker than predicted in previous
papers because phase correlations and relative position shifts
of eigenstates have to be taken into account. Resonant links
between Fock states follow the resonance network. The
connectivity in Fock space grows substantially with weak
disorder, indicating the possibility of the emergence of a
different localization length scale for two interacting particles.
Because this potential regime is setting in at anomalously
weak disorder strength, previous numerical scaling tests are
not conclusive (too strong disorder). But even more, with
current computers and exact diagonalization methods, it
is highly nontrivial to enter the desired potential scaling
regime which starts at W = 0.5 and should extend at least
down to W = 0.05 to estimate exponents. Therefore, we
are in need of different computational methods. We also
conjecture that a breaking of particle-hole symmetry by
adding next-to-nearest neighbor hoppings will lead to a further
suppression of the delocalization trend by interactions. We
finally note that our results could be of interest for the recent
interest in many-body localization [25] with numerical [26]
and experimental [27] efforts to illuminate the dynamics in
high-dimensional Fock spaces, which is largely controlled
by the properties of the overlap integrals discussed in this
work.
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