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An all-optically driven strategy to govern a liquid-crystalline collective molecular nonlinear oscillator is
discussed. It does not require external feedback of any kind while the oscillator and a time-dependent pertur-
bation both are sustained by incident light. Various dynamical regimes such as frequency-locked, quasiperi-
odic, forced, and chaotic are observed, in agreement with a theoretical approach developed in the limit of the
plane-wave approximation.
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The response of nonlinear oscillators to a time-dependent
external control parameter is well known and has been in-
vestigated in a wide range of systems including physical �1�,
chemical �2�, and biological �3� ones. Periodic forcing may
lead to entrainment or quasiperiodicity according to whether
the ratio fF / fN between the forcing frequency �fF� and the
natural frequency �fN� of the autonomous system is rational
or irrational. The natural limit cycle behavior of the oscillator
may also be driven into more complex dynamics. Recent
applications of periodic forcing such as control of a chaotic
chemical reaction �4� or control of a microfluidic droplet
emitter �5� have emphasized the use of this technique to en-
gineer controllable systems.

An optical forcing scheme to achieve noncontact control
of a nonlinear oscillatory system is limited to a small number
of systems. A well-known example is the light-sensitive
Belousov-Zhabotinsky reaction, which is a spatially ex-
tended system where a homogeneous time-periodic optical
forcing allows control of the pattern formation �6�. A liquid-
crystal light valve, where a two-dimensional external feed-
back and an additional quasistatic electric field have been
used, is another example �7�. In contrast, a local optical pe-
riodic forcing on a uniformly oscillating catalytic surface
reaction has been investigated in Ref. �8�, where the heating
provided by a focused laser beam acts as a local external
perturbation. To our knowledge the all-optical situation,
where both the nonlinear oscillator and the time-dependent
perturbation are supplied by light only, without the need for
an external feedback, has not been reported yet.

We propose an all-optical periodic forcing strategy to con-
trol a liquid-crystalline molecular oscillator driven by light
based on optical orientational nonlinearities of mesophases
�9�. There is no need for external feedback owing to the
strong light-matter coupling that occurs during the propaga-
tion of light through the optically anisotropic liquid-crystal
�LC� material. Indeed it is known that a LC under an intense
laser field can be viewed as a collective molecular oscillator
whose dynamics depends on the light-matter interaction ge-
ometry. Very rich director dynamics has been observed and
confirmed theoretically at fixed light intensity. Among the
most studied geometries one can mention a circularly polar-
ized beam at normal incidence �10,11�, an elliptically polar-
ized beam at normal incidence �12,13�, an ordinary linearly

polarized beam at oblique incidence �14�, and a linearly po-
larized beam at normal incidence having an elliptic intensity
profile �15�. More specifically, laser-induced nonlinear reori-
entation dynamics in LCs has retained some attention in the
context of the transition to chaos �16–18� and chaotic rota-
tions �19,20�. In contrast to all previous studies performed at
fixed intensity, the aim of the present work is to explore both
theoretically and experimentally two representative light-LC
interaction geometries when the intensity is periodically
modulated.

The observations are performed using the experimental
setup shown in Fig. 1 where the linear geometry refers to a
linearly polarized light impinging at oblique incidence �typi-
cally a few degrees� onto nematic film with the electric field
perpendicular to the incidence plane �Fig. 1�a��. The circular
geometry corresponds to a circularly polarized light with
normal incidence �Fig. 1�b��. In both cases the autonomous
system has a limit cycle behavior at the onset of a secondary
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FIG. 1. Experimental setup. Multiline Ar+, argon-ion laser; DP,
dispersion prism; M, mirror; � /2, half-wave plate; P, polarizer;
R-� /2, rotating half-wave plate; BS, beam splitter; � /4, quarter-
wave plate; L, lens; NLC, film of nematic LC; d, diaphragm; IF,
interferential filter for 514.5 nm; Di, photodiodes. �a�,�b� Linear and
circular geometries. k0 and E: incident wave vector and electric
field.
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Hopf bifurcation, where the reorientation amplitude
�n�� �n�=n−n0 and n0 is the unperturbed director, which is
the unit vector that represents the averaged local molecular
orientation; see Fig. 1� acquires an oscillatory behavior
with natural frequency fN. The periodic forcing is then
achieved by sinusoidal perturbation of the intensity,
��t�=�0+�� sin�2�fFt�. Here, � is the intensity normalized
to the reorientation threshold, which corresponds to the so-
called optical Fréedericksz transition, and �� is the forcing
amplitude.

We used in the experiment commercial nematic E7 from
Merck which was placed between two glass substrates that
were chemically treated to ensure homeotropic anchoring
�molecules are perpendicular to the film walls�. The incident
beam is focused onto a nematic film of L=75 �m thickness
using a 150-mm focal length lens. The aforementioned gen-
eral form of ��t� was obtained by combining two laser lines
��1=514.5 nm and �2=488 nm� selected from a multiline
linearly polarized argon-ion laser using a dispersion prism
placed at the laser output. The total intensity of each of the
two beams is controlled using independent combinations of a
� /2 plate followed by a polarizer. The linear polarization of
the �2 beam is continuously rotated owing to a rotating � /2
plate controlled by an electrical motor. The polarizer placed
after the rotating � /2 plate ensures that the �2 beam is po-
larized along the y direction with the intensity �2�t�
�sin2��fFt� whereas the intensity �1 of the y-polarized �1

beam is kept fixed. Both beams then recombine through a
beam splitter to generate an excitation light field whose total
intensity ��t�=�1+�2�t� is of the required form. Note that the
forcing frequency �fF� and amplitude ���� can be adjusted
independently. Finally, a � /4 plate placed before the lens
allows one to switch between two geometries. Its optical axis
is set along �at 45° of� the y axis in the linear �circular� case.

At first the total intensity, which is monitored by the pho-
todiode Dtot �see Fig. 1�, is increased smoothly from zero,
setting ��=0. The homeotropic state remains stable below
the Fréedericksz threshold. Above threshold the system
settles either to a stationary distorted state �fixed point� in the
linear case or to a state of uniform precession of the director
around the z axis with frequency fP �limit cycle� in the cir-
cular case as shown in Figs. 2�b� and 2�b��. A further in-
crease of the intensity �0 leads to a secondary supercritical
Hopf bifurcation in both cases. At the onset of this instability,
a new frequency fN associated with the oscillation of the
reorientation amplitude appears as sketched in Figs. 2�c� and
2�c��. Forcing experiments are performed slightly above the
secondary threshold �typically a few percent�, ensuring that a
system never reaches higher instabilities for both linear �21�
and circular �11� geometries.

Both the natural limit cycle at ��=0 and the reorientation
amplitude dynamics at ���0 are monitored by the time-
dependent total intensity of the central part of the beam that
emerges from the sample, Ic

tot�t�= Ic
��1��t�+ Ic

��2��t�, where the
contribution Ic

��i� depends on �i and �n��. Indeed Ic
��i���i at

fixed �n��. In addition, the larger �n�� is, the stronger self-
focusing effects are and Ic is small when �i is fixed. There-
fore the Fourier spectrum of Ic

��1��t� can safely be associated
with the one of �n� � �t� since �1 is constant. This is achieved

by using an interferential filter operating at �1 to get rid of
the �2 contribution where �2�t� is modulated with frequency
fF. The photodiode Dc �see Fig. 1� thus collects the signal
Ic

��1�, which will be further denoted as Ic. We notice that we
were able to fully characterize the director dynamics �i.e., its
polar and azimuthal degrees of freedom� using a polarimetric
analysis of the output beam, which is not shown in Fig. 1.
However, only the polar degree of freedom is of interest in
the presented results.

A rigorous description of the dynamical properties of
nematics is well established in a full hydrodynamic approach
�22�. The basic equations are those of the director and the
velocity field, which are coupled with the Maxwell’s equa-
tions that govern the propagation of light. The director equa-
tions are derived using the torque balance condition among
the elastic, electric, and viscous torques. The flow caused by
the director reorientation was shown to lead to quantitative
rather than to qualitative changes in both geometries �18,23�
within the range of intensity that has been explored here.
Thus, the velocity is neglected in our study. In the calcula-
tions we used the plane-wave approximation and assumed
that the director depends only on z and t. Taking into account
that ��L Maxwell’s equations were solved under the geo-
metrical optics approximation. These equations are conse-
quently reduced to a set of two ordinary differential equa-
tions for the amplitudes of the ordinary �o� and extraordinary
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FIG. 2. Maps of the dynamical regimes near the 2:1 entrainment
region in linear and circular geometries. �a�,�a�� Lp/q, frequency-
locked �f = fF / p�; F, forced �f = fF�; QP, quasiperiodic; PD, region
of period doubling �f = fF / �2n�, n=2,3 , . . .�; C, chaos. The director
dynamics on the unit sphere is sketched below �b�,�b�� and above
�c�,�c��, the secondary Hopf bifurcation.
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�e� waves. Despite the simplification described, the resulting
set of equations is rather cumbersome and is not presented
here explicitly. The complete bifurcation scenario for the au-
tonomous system ���=0� is available for both linear �21�
and circular �11� geometries under the aforementioned ap-
proximations. The models developed there might straightfor-
wardly be extended to the case of time-dependent intensity
��t�. As in previous studies, we used different representations
to describe the director depending on the geometry. Such
a choice is dictated by symmetry considerations. Then
an expansion of the director components is performed
in terms of orthogonal functions which satisfy the
boundary conditions nx,y�z=0,L ; t�=0. Namely, we
took n= �sin 	 , cos 	 sin 
 , cos 	 cos 
� with 

=�n=1

� 
n�t�sin�n�z /L� and 	=�n=1
� 	n�t�sin�n�z /L� for linear

geometry, whereas n= �sin � cos  , sin � sin  , cos �� with
�=�n=1

� �n�t�sin�n�z /L� and =0�t�+�n=1
� n�t�sin��n

+1��z /L� / sin��z /L� for the circular one. The Galerkin pro-
cedure was then used to obtain a set of nonlinear ordinary
differential equations for the mode amplitudes �
n ,	m� or
��n ,m�, which were solved numerically using the standard
Runge-Kutta method. In fact, it is enough to retain only a
small number of modes for the director expansion to obtain a
good accuracy for the calculated director components �better
than 1%�. Note that Maxwell’s equations were solved at each
step of the numerical integration for time t. We also intro-
duce the total phase delay ��t�=2� /L�0

L�ne�z , t�−no�dz be-
tween the o and e waves across the whole film �ne,o are the
refractive indices�, which is a global measure of the ampli-
tude of reorientation �9�. The calculated ��t� will thus be
compared with the measured Ic�t�.

The calculated maps of dynamical regimes are shown in
Fig. 2 in the ��� /�0 , fF / fN� plane, where the same material
parameters as in Ref. �11� have been used. In addition, �0 is
taken approximately 1% above the secondary Hopf bifurca-
tion threshold. For the sake of illustration the results are
presented for a typical layer thickness L=100 �m and a typi-
cal incidence angle �=5° �for the linear geometry only, see
Fig. 1�. These maps aim to show the generic dynamical be-
havior of the system and further quantitative comparison
with experiments is done using the actual experimental val-
ues. We note, however, that the conclusions are unchanged
under �i� cell thickness changes as long as the geometrical
optics approximation is satisfied and �ii� incidence angle
changes in the typical range 2°–8° �for linear geometry�
since the observed dynamics is mainly dictated by existence
of the secondary Hopf instability �21�. In both cases we fo-
cus our study on the region near 2:1 resonance which is
known to be strong. An advantage of the system in question
is that the entrainment region �the so-called Arnold’s tongue�
which emanates from the point �2/1 ,0� is rather wide, which
facilitates its observation; see Fig. 2. Experimental evidence
of entrainment is found by fixing the forcing amplitude and
scanning the forcing frequency. The results for the linear
geometry are shown in Fig. 3, where the power Fourier spec-
tra of Ic are plotted together with the spectra of its theoretical
analog, the phase delay �. Each panel corresponds to a mea-
surement which lasted �4000 s, with fF decreasing from
panels �a� to �d�. The spectra of Ic and � for a state within the

2:1 tongue �Fig. 3�b�� are characterized by a single frequency
fF /2, as expected. Outside the tongue and for sufficiently
small ��, the system responds quasiperiodically. In that case
the spectra of Ic and � are described by means of two in-
commensurable frequencies fN and fF that generate peaks at
frequencies nfN±mfF, n and m integers, as shown in Figs.
3�a� and 3�c�. The 3:2 tongue is also observed and shown in
Fig. 3�d�. In this case the single frequency fF /3 determines
the dynamics, as expected. For higher forcing amplitude a
forced regime �the F region in Fig. 2� was found which has
fF as a unique characteristic frequency. When starting inside
the 2:1 tongue and decreasing the forcing frequency �keeping
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the L2/1 regime�; �b�,�b�� fF / fN=1.35 �1.742� �limit cycle after the
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the same value of ���, a route to chaos via a cascade of
period-doubling bifurcations was found for moderate to large
forcing amplitudes �the PD and C regions in Fig. 2�. The
resulting typical trajectories are shown in Fig. 4 for both
linear �at �� /�0=0.3� and circular �at �� /�0=0.27� geom-
etries. In Fig. 5 the power spectra of Ic �experiment� and �
�theory� are compared for the successive states from the se-
quence L→PD→C for the circular geometry. In particular
the transition to a chaotic regime is accompanied by an
abrupt frequency widening around f / fF=1/2. Such a behav-
ior is predicted by theory as well �see Figs. 5�b�� and 5�c���.
In addition, the characteristic presence of windows of regu-
larity inside the chaotic region when fF varies at fixed �� has
been found. There, the director dynamics is periodic. One of
these windows is shown in Fig. 6 for �� /�0=0.22, where a
fF /3 dynamics suddenly appears when the frequency is de-
creased. Period doubling then begins again with limit cycles

having frequencies fF /6, fF /12, etc., and then once again
break off to chaos.

In conclusion, we showed that an all-optical control
scheme based on periodic forcing of the light intensity can
be implemented in liquid-crystalline materials. Two light-
matter interaction geometries have been used for demonstra-
tion. Various dynamical regimes such as frequency-locked,
quasiperiodic, forced, or chaotic have been shown to result
from the optical forcing. The theoretical study is carried out
within the general framework involving Maxwell’s equations
and the constitutive material equations. Fairly good qualita-
tive agreement between theory and experiments is obtained
in the entire range of the problem parameters. The polariza-
tion sensitivity of mesophases might also offer the possibility
to extend present results to a periodic modulation of the po-
larization instead of the intensity.
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