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Dip of the granular shear stress
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Recent experiments reveal an unexpected dip of the shear stress as the shear rate increases, from the rate-
independent regime to Bagnold flow. Employing granular solid hydrodynamics, it is shown that in uniform
systems, such dips occur for given pressure or normal stress, but not for given density. If the shear rate is strongly
nonuniform, enforcing a constant volume does not prevent the local density to vary, and a stress dip may still
occur.
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I. INTRODUCTION

Granular materials are known to display a rich variety of
interesting phenomena and to possess great significance for
geophysics and industrial applications. Although these media
(that we after all deal with in our daily life) appear simple
and easily understandable, establishing a robust macroscopic
understanding complete with a continuum mechanical theory
has turned out to be a challenging task. For instance, only
recently was it revealed, to the surprise of many in the field, that
shear stresses display a nonmonotonic behavior as the shear
rate increases. The first experiment is in a top-rotating torsional
shear cell [1,2], the second in a split-bottom shear cell [3].
One difficulty in modeling a granular medium stems from
its qualitatively different behavior in different rate regimes,
depending on how strongly the grains are agitated. So less
surprisingly, the stress dip occurs between two rate regimes,
the rate-independent elasto-plastic one and that of rapid dense
flow.

Elasto-plastic deformation has been under the focus of
engineering research for many decades if not centuries [4–9].
The state of engineering theories, though typically confined
to the rate-independent regime, remains highly confusing,
at least for physicists: Innumerable continuum mechanical
models compete, employing strikingly different expressions.
Some are even proprietary, well hidden in codes. Nevertheless,
all models yield a realistic account of the critical state and
other uniform deformations, the better ones also of the shear
band [10]. The second regime, rapid dense flow (such as heap
flows, mud slides, or avalanches), is simply taken to obey
different sets of equations [11–15].

A unified theory capable of accounting for granular phe-
nomena of arbitrary shear rates, from static stress distribution
at vanishing rates, over the rate-independent elasto-plastic
motion at slow rates, to the rapid dense flow at high rates,
would therefore seem a useful tool, both practically and to
help build a sound, robust understanding of granular physics.

Granular solid hydrodynamics (GSH) is a continual me-
chanical theory derived from a few inputs that we hold to be the
basic physics of granular media [16], and hence constructed to
be broad ranged. Until now, GSH has shown itself capable of
accounting for phenomena such as static stress distribution
[17–19], incremental stress-strain relation [20], yield [21],
propagation and damping of elastic waves [22], elasto-plastic
motion [23], the critical state [24], and fast dense flow [25].
Clearly, whether the stress dip may be accounted for, at least

qualitatively, is another useful test for GSH, especially because
the effect was not anticipated.

An important ingredient of GSH is its set of state variables.
In addition to the usual ones, density ρ, temperature T , and
velocity vi , GSH has two additional variables: the granular
temperature Tg (or equivalently granular entropy sg) and the
elastic strain uij . The first is a measure for granular agitation
and, similar to the true temperature T , a summary variable:
Tg accounts for the energy wT contained in the mesoscopic,
intergranular degrees of freedom, the same as T accounting
for the microscopic, inner granular ones. In other words, Tg

accounts for the strongly fluctuating kinetic and elastic energy
associated with granular jiggling. All this is typical of granular
media, in which irreversibility and energy decay have two
cascades: Energy always goes from the macroscopic to the
mesoscopic, and on to the microscopic degrees of freedom,
never backwards.

Accounting for high densities, when enduring contacts
abound and granular jiggling is small, we expand wT to obtain
wT = s2

g/(2ρb), with Tg ≡ ∂wt/∂sg = sg/ρb. The quadratic
term is the lowest order one because sg,Tg = 0 is an energy
minimum, the same as in a Ginzburg-Landau expansion, just
without the fourth order term or a phase transition. [The
expansion coefficient b is defined in Eq (14d).] Note that the
usual granular temperature TG is defined as 2/3 of a grain’s
average kinetic energy. This is useful in the dilute limit when
there is little elastic energy in wT . Then, and only then, does the
relation (with m denoting the average mass of the grains) hold:

wT = 3ρTG/2m = ρbT 2
g /2. (1)

Employing the strain rather than stress as a state variable
yields a simpler description, because the former is in essence a
geometric quantity, while the latter contains material parame-
ters such as stiffness. Yet one cannot use the total strain field εij

of conventional elasticity, because its relation to the stress lacks
uniqueness when the system is plastic. Engineering textbooks
divide εij into two symmetric fields, elastic uij and plastic ε

(p)
ij ,

with the first accounting for the reversible and second for the
irreversible part. They then employ εij ,ε

(p)
ij as two independent

fields to account for granular elasto-plasticity. We believe one
should, on the contrary, take the elastic strain uij as the sole
variable. Interpreted as a coarse-grained measure of the grains’
deformation, it relates uniquely to the elastic energy w� and
the elastic stress:

πij = −∂w/∂uij ;
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see Ref. [16] for a rigorous derivation. More plausibly, this
relation may be seen to hold because granular deformation re-
sults in a restoring force, the macroscopic expression of which
is the elastic stress, and because uij is related to coordinates.
(Deriving the energy with respect to the coordinate one obtains
the force; one obtains the stress if the derivative is with respect
to uij .) Note that the relation between the elastic and total
strain is simple only at small increments, where δuij = δεij

holds. More generally, it is given by the evolution equation of
uij ; see Sec II. Its basic structure is

∂tuij − vij = −uij /τ,

where vij ≡ 1
2 (∇ivj + ∇j vi) is the strain rate. It accounts for

the usual change of elastic deformation, while −uij /τ accounts
for its relaxation. As this happens only when the grains jiggle
and briefly lose contact with one another, we set 1/τ ∼ Tg .
[See Eq. (10) for the proper nonlinear convective derivative.]

Given the two additional variables, Tg and uij , the total
stress σij is fully determined by the necessity to comply with
various general principles; see the discussion in Sec. II and
Ref. [16]. It has three contributions: elastic πij , seismic PT δij ,
and viscous −ηgv

0
ij (with v0

ij the traceless part of vij ). The
stress expression is given in Sec. II. For the discussion here,
the following qualitative expression is sufficient:

σij = πij + PT δij − ηgv
0
ij . (2)

At slow rates, in the rate-independent regime, only the elastic
stress is important. Given an expression for the energy w

(provided in Sec. II), πij is known, and we can use the
force balance ∇j σij = ∇jπij = ρgi (with gi the gravitational
constant) to calculate static stress distributions [17–19]. We
also can consider elasto-plastic motion [23] employing the
evolution equation of uij , the stationary solution of which
turns out [24] to be the critical state, σ (c)

ij (ρ), a rate-independent
function of the density alone.

At higher rates, the seismic pressure PT exerted by granular
agitation and the viscous stress −ηgv

0
ij also become important.

They are

PT = −∂(wT V )

∂V
= −∂(wT /ρ)

∂(1/ρ)
∼ T 2

g , (3)

ηg = η1Tg, Tg ∼ vs ≡
√

v0
ij v

0
ij . (4)

PT ∼ T 2
g is the usual fluid pressure exerted by grains jiggling

and given by the energy wT ∼ T 2
g derived with respect to

the volume V . We therefore call it the seismic pressure [26].
The viscous stress has the usual form, with a viscosity that is
proportional to Tg . The third relation [i.e., the second part of
Eq. (4)] is from the balance equation for Tg , and valid only
under stationary condition, when the production of granular
jiggling (i.e., Tg) by a shear rate is equal to the rate at which Tg

relaxes. The granular temperature Tg is then constant and given
as Tg ∼ vs = γ̇ ; see Eq. (9). (Note that the properly defined,
invariant shear rate is vs , while γ̇ is the commonly used, though
only loosely defined, notation, for the same quantity. We
shall use them interchangeably in the introduction, but define
γ̇ ≡ ∇xvy in Sec III.)

For given shear rates, πij assume the density-dependent
critical form π

(c)
ij (ρ), and Tg ∼ γ̇ holds. We therefore write

the pressure P ≡ σ��/3 and a shear stress component as

P = P (c)(ρ) + e1(ρ)γ̇ 2, (5)

σxy = σ (c)
xy (ρ) + e2(ρ)γ̇ 2. (6)

For constant density, P and σxy are obviously monotonically
increasing functions of the rate γ̇ . Keeping instead the
pressure P constant, the density ρ(P,γ̇ ), obtained from
inverting Eq. (5), becomes rate dependent. Inserting ρ(P,γ̇ )
into Eq. (6), monotonicity of σxy , depending on the specific
form of P (c)(ρ),σ (c)

xy (ρ),e1(ρ),e2(ρ), is frequently lost. These
functions contain material parameters that are specified below.
They have been obtained in previous works by comparison
with experiments, especially in Refs. [16,19], since general
principles do not put sufficient constraint on them. Given these
expressions, GSH lets the density remain constant at slow
rates (in the rate-independent regime), but it starts to decrease
at higher ones, as a result of which the elastic contribution
σ (c)

xy (ρ) decreases as well. For appropriate material parameters,
this happens faster than the viscous term e1(ρ)γ̇ 2 increases,
such that the shear stress displays a dip. It is a dip because at
yet higher rates, the viscous term always wins, and the shear
stress grows without bounds.

Both cited experiments that have observed the stress dip
have highly nonuniform density and shear rates. A quantitative
comparison with GSH would therefore require the numerical
solution of a large set of nonlinear, partial differential equa-
tions. Qualitatively speaking, however, because enforcing a
constant volume does not prevent the local density to vary, a
stress dip may still occur.

To understand this better, consider for simplicity two sub-
volumes (each uniform), in contact via a flexible membrane,
such that the total volume V1 + V2 is a constant. This should
serve as a model for the continuous nonuniformity of a constant
volume experiment. Initially the total system is uniform,
with both densities equal, ρ1 = ρ2, and both shear rates
vanishing, γ̇1,γ̇2 = 0. Now, if γ̇2 is cranked up, but γ̇1 remains
zero, because of pressure equality, P1(ρ1,γ̇1) = P2(ρ2,γ̇2), the
density must change and the membrane will stretch in one
direction, with ρ2 decreasing and ρ1 increasing. If system
1 is much larger than 2, the stretching of the membrane
will not change ρ1 much, and as a result, P1(ρ1,γ̇1) will
remain essentially constant. P2 = P1 will as well, and the
pressure-controlled limit holds in system 2. More realistically,
in both experiments system 1 seems larger, but not by orders of
magnitude. Then an intermediate case between the pressure-
and density-controlled limits will happen. As only in the
strictly density-controlled limit do we have monotonicity of
the shear stress, any inhomogeneity of shear rates may result
in nonmonotonic behavior of the shear stress; it is only a
question of degree.

We summarize: A minimum of the shear stress as a function
of the shear rate is forbidden in Newtonian fluids for general
reasons, but was observed in granular media [1,2]. GSH,
derived in explicit compliance with general principles, agrees
with this observation: It strictly forbids a stress minimum for
given density, independent of material parameters, but does
allow it for given pressure, or any experimental setup such
that the density changes with the rate. Employing parameters
from previous works, validated using other experiments, and
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assuming uniform state variables, we show in this paper
that a stress minimum does occurs for given pressure. The
experiments were performed at constant volume but with a
spatially varying rate. The consideration of the last paragraph
shows why a varying rate leads to a changing local density at
constant total volume, hence making a stress minimum possi-
ble. More specifically, two subsystems in pressure equilibrium
with constant total volume are considered, with only one being
subject to a shear rate.

Our calculation below shows rise and drop of the density, as
a function of the rate at given pressure, with one of the stronger
drops taking place at the rate of the stress minimum. The
experiments [1,2] show an increase of the volume, or average
density, for given pressure at approximately the same rate
(within an order of magnitude, the coordinates are logarithmic)
where the stress minimum was observed for given volume. No
information on what happens to the stress at given pressure is
provided, though the average density of course cannot change
at given volume. Now, even assuming both are correlated, there
is less of a contradiction than it appears, because a shear band
was consistently observed in the experiments [27], implying
most of the shear rate is concentrated there. Since the solid
regions outside the shear band sustain a vanishing shear rate,
they do not participate in what GSH describes happens at
elevated rates, but will massively contribute to the average
density. Given the continuity of pressure, shear stress, chemical
potential, etc., from the shear band to the solid region, it is clear
that both densities are correlated. It is also quite conceivable
that a density minimum in the shear band entails a maximum
in the solid region. As a result, the average density goes up,
although that in the shear band goes down.

II. THEORY

In this section GSH is presented in greater detail, with
a focus on those expressions that were actually solved. The
first two equations are conservation of density and momentum
density:

∂tρ + ∇i(ρvi) = 0, (7)

∂t (ρvi) + ∇j (σij + ρvivj ) = 0. (8)

As compared to Newtonian fluids, the additional variables
of granular media are granular entropy sg and the elastic
strain uij . The first accounts for the energy contained in
the mesoscopic, intergranular degrees of freedom such as the
random, small-scaled motion of the grains. The elastic strain
uij is the part of the strain that deforms the grains and gives
rise to reversible storage of the elastic energy.

A two-stage irreversibility holds: Energy decays from the
macroscopic to the mesoscopic degrees of freedom, and then
to the microscopic, innergranular ones. Slowly varying stress
or flow fields are macroscopic. Jiggling and sliding of the
grains are mesoscopic, they are summarily quantified by
granular entropy and temperature, sg,Tg . Microscopic degrees
of freedom such as phonons are quantified by the true entropy
and temperature s,T . Energy never goes backwards: We cannot
agitate granular medium by heating it, nor cause granular flow
by Tg alone.

Given these inputs, GSH is set up by following the hydrody-
namic procedure (see Ref. [28] for a pedagogical presentation
and Ref. [16] for the actual execution): Maximizing the entropy
with appropriate constraints, the equilibrium conditions and
the associated thermodynamic forces are obtained. Then,
starting from energy conservation, the reactive and dissipative
fluxes for all state variables are derived. These are proportional
to thermodynamical forces, with the coefficients given by the
Onsager matrix. The product of fluxes and thermodynamical
forces determines entropy production that is required to be
positive definite and vanish in equilibrium.

The equation for the true entropy s is not needed for our
purpose. The equation for the granular entropy sg , closely
related to the energy-density balance equation of Ref. [29], is

Tg∂t sg + Tg∇i(sgvi − κg∇iTg)

= κg(∇Tg)2 + ηgv
2
s + ζg(vll)

2 − γ T 2
g , (9)

where v2
s ≡ v0

ij v
0
ij , Tg is the granular temperature, ηg,ζg > 0

are, respectively, the shear and compressional granular vis-
cosities and κg > 0 is the granular heat diffusion coefficient.
The last term in Eq. (9), with the transport coefficient γ > 0,
accounts for Tg relaxation, or the energy decay from meso-
scopic to microscopic degrees of freedom. Note that the
transport coefficients depend on the state variables, especially
Tg and ρ. This we shall specify in the next chapter. (Note this
γ is unrelated to the shear rate, conventionally denoted as γ̇ .)

When grains jiggle and slide, Tg �= 0, they will briefly loose
contact with one another. During this time, the deformation of
the grains will decrease and the stored elastic energy will
diminish. This is the reason granular media are transiently
elastic, similar to polymers [16]. The difference is that the
associated rates are proportional to Tg and not material con-
stants; hence they vanish for Tg = 0 and become permanently
elastic in this limit. So we take the elastic strain uij to increase
with the shear rate vij , and to decrease by relaxation for finite
Tg . In addition to geometric considerations, the equation of
motion for uij is

(∂t + vk∇k)uij − vij + uik∇j vk + ujk∇ivk

= −αijklvkl − u0
ij /τ0 − ullδij /3τ1, (10)

1/τ0 = λ0Tg, 1/τ1 = λ1Tg. (11)

The last two terms of the first line are of geometric origin,
and the last two terms of the second line are dissipative. The
traceless part u0

ij and the trace of the elastic strain � ≡ −ull ,
decay with different rates, where λ0 and λ1 depend on ρ. We
conjecture that both relaxation rates vanish at the maximally
possible density ρcp, the random close packing one. Hence we
take λ0,λ1 ∝ (ρ − ρcp).

The tensor αijkl is reactive and does not contribute to the
entropy production. It has a counter term in the stress tensor
that (according to Onsager relation) has an opposite sign, and
the contribution of both to entropy production cancel. To first
order in the strain, it is given by [24,30]

αijkl = αδikδjl + α2u
0
klδij /3. (12)

The tensor αijkl modifies the rate at which the elastic strain
evolves for given shear rate. It also accounts for the softening
of the medium with growing Tg . It is probably a result of force
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chains being broken by the shear motion. Only by including
α2 (see Ref. [24]) is the so-called critical state (the perfectly
plastic one characterized by a constant shear stress and density
at given shear rate and pressure [31]) realistically accounted
for. The stress tensor is

σij = πij − αklijπkl − πikujk − πjkuik

+ Pδij − ζgvllδij − ηgv
0
ij . (13)

The last two terms are dissipative and account for viscosity.
The pressure P is given by the free energy f (ρ,Tg,uij ) as P ≡
ρ∂f/∂ρ − f . It has two contributions, seismic and elastic:

f = fT + fel, P = PT + Pel, (14a)

PT = ρ∂fT /∂ρ − fT , (14b)

Pel = ρ∂fel/∂ρ − fel, (14c)

fT = −1

2
ρb0

(
1 − ρ

ρcp

)0.1

T 2
g , (14d)

fel = B
√

�

(
2

5
�2 + u2

s

ξ

)
. (14e)

Note u2
s ≡ u0

ij u
0
ij , and that b0 is a dimensional constant which

may be set to 1 by appropriately defining the dimension of Tg .
The coefficient B, accounting for overall rigidity, is

B = B0

(
ρ − ρ̄

ρcp − ρ

)0.15

. (15)

B0 is the rigidity coefficient and the parameter ρ̄ ≡ (20ρlp −
11ρcp)/9. The expression forB delivers stable elastic solutions
only for ρlp � ρ � ρcp, between the random loosest and
closest packing density. There is no stable elastic solution
for ρlp > ρ, because grains cannot stay static when they lose
contact with one another. This built-in property of Eq (14e) is
compatible with simply setting B = 0 for ρ � ρlp.

Note that both exponents, 0.1 and 0.15, respectively, of
Eqs. (14d) and (15), are approximate values taken from
previous studies. As B falls to zero at ρ = ρlp, long before
ρ → ρ̄, no limiting behavior is implied here. The same is true
for the dense limit, because we take ρcp as the ideal density
increasingly difficult to approach, at which there is no room
left for any granular rearrangements or plastic motion.

The elastic stress πij is given as

πij ≡ − ∂f

∂uij

= B
[√

�

(
�δij − 2

ξ
u0

ij

)
+ u2

s

2ξ
√

�
δij

]
.

(16)

As the elastic energy fel is convex with respect to us and �

only for

us

�
�

√
2ξ or

πs

πll/3
�

√
2

ξ
, (17)

where π2
s = π0

ijπ
0
ij , it contains the information of granular

yield, e.g., that a layer of sand on an inclined plane may
remain at rest only when the inclination angle is less than
about 30◦. That is the reason we take ξ as density independent
and approximately ξ = 5/3.

All this is a brief presentation of the many considerations
in Refs. [16,19,23], to obtain material-dependent parameters

P
0

y

x σ0z x

v
x
(y)

FIG. 1. Geometry of setup for the simple shear problem. Granular
media is located between two plates. The upper plate is sheared with
the shear stress σ0, whereas the lower plate is at rest. The pressure P0

is applied to the upper plate.

from various experiments. Refer to these references for more
details.

III. EQUATIONS FOR THE GEOMETRY
OF SIMPLE SHEAR

We consider the simple shear geometry (see Fig. 1), aiming
to find all stationary, homogeneous solutions. We search for
solutions with a nonzero velocity component only along x,
varying linearly along y, implying γ̇ ≡ ∂yvx = const. The
elastic stress πij and the density ρ are constant as well. In
addition, from the geometry, we can deduce uyz = uxz = 0.
We choose the y axis downwards with y = 0 corresponding to
the upper plate. In such a geometry, the shear rate is negative,
γ̇ < 0. But in the figures below, the absolute value of γ̇ will
be plotted. In accordance with the assumptions above, vll = 0.
The confining pressure applied to the upper plate P0 is assumed
to be much larger than the weight of the sand, so gravitation
may be neglected.

Density and momentum equations. Since vy = vz = 0, ρ =
const, and vx = vx(y), Eq. (7) for the density is identically
satisfied. From the momentum balance equation (8) follows
that stress components must be constant everywhere within a
granular layer:

σxy = σ0, (18a)

σyy = P0, (18b)

where σ0 is the shear stress acting on the upper plate. Taking
into account the definition for the stress tensor (13), we
arrive at

σxy = (1 − α)πxy −
(

2α2

3
+ 1

)
uxyπxx

−
(α2

3
+ 1

)
uxyπyy − πxy(uxx + uyy) − ηg

2
γ̇ , (19a)

σyy = (1 − α)πyy − 2α2

3
u0

yyπxx − α2

3
u0

yyπyy

− 2uxyπxy − 2πyyuyy + P. (19b)

Tg equation. The transport coefficients ηg and γ which
enter into Eq. (9) for granular entropy might be expanded with
respect to Tg as [16]

ηg = η1Tg, γ = γ0 + γ1Tg, (20)

where the zeroth order term in the expansion of ηg is missing
to ensure the correct transition to the elastic limit and η1 and
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γ1 are functions of ρ taken to be as [24]

η1 = h1b
1/2
0 ρcp

(1 − ρn)β+ε
, γ1 = g1b

3/2
0 ρcp

(1 − ρn)β
, (21)

where h1, g1, β, and ε are material parameters. In what follows
the density is normalized to the random close packing density,
ρn = ρ/ρcp.

Note also the divergent nature of the transport coefficients,
which is a typical situation when approaching the maximal
value for the density (see, e.g., Ref. [12]). It can be intuitively
explained as follows. The larger the density is, the longer
the grains are in contact with each other, leading to a more
effective momentum and energy transfer, described by terms
proportional to, respectively, ηg and γ . It is worth noting, that
the shear rate γ̇ appears in all terms together with a quantity
d = √

η1γ1/γ0, which has a dimension of seconds. Thus, we
believe that d determines the time scale and for the regimes
considered below might be assumed to be independent on the
density.

Next, we obtain the expression for stationary Tg as a
function of the shear rate γ̇ from Eq. (9):

Tg =
√

η1

γ1
· �(γ̇ d)

2d
, with �(γ̇ d) =

√
1 + 2(γ̇ d)2 − 1.

(22)

Equations for uij . Writing explicitly expressions for all
nonzero strain components the following expressions are
derived from Eq. (10):

−(1 − α)γ̇ + 2uxy

τ
+ 2uxxγ̇ = 0, (23a)(

α2

3
+ 2

)
γ̇ uxy + uyy

τ
+ �

3τ2
= 0, (23b)

α2

3
γ̇ uxy + uxx

τ
+ �

3τ2
= 0, (23c)

uzz = uxx, (23d)

where 1/τ2 = 1/τ − 1/τ1. Substituting Tg given by Eq. (22)
into Eq. (11) and using the definitions for the transport
coefficients introduced in [24,30]:

λ0 =
√

γ1

η1
l̃0(1 − ρn), λ1 =

√
γ1

η1
l̃1(1 − ρn), (24)

the following expressions for the relaxation times are obtained:

1

τ0
= l̃0(1 − ρn)

2d
�(γ̇ d),

1

τ1
= l̃1(1 − ρn)

2d
�(γ̇ d), (25)

where l̃0 and l̃1 are material parameters. Note that 1/τ0 → 0
and 1/τ1 → 0 as ρ → ρcp in accordance with the discussion
above. The transport coefficient α2 is taken to be as [24,30]

α2 = κ2(1 − ρn). (26)

In summary, our problem consists of a set of nonlinear
equations (18a)–(19b) and (23a)–(23d) with P , stress-strain
relation, transport coefficients Tg , and relaxation times given
by, respectively, Eqs. (14b), (14c), (16), (20), (26), (22),
and (25). After some straightforward algebra we are finally
faced with a set of four nonlinear algebraic equations with
respect to γ̇ , ρ, πxy , and πyy which was solved numerically.

In calculations the following parameters were used: ρg =
2970 kg/m3 (the grain density), ρcp = 0.645 ρg , ρlp/ρcp =
0.82, ρ̄/ρcp = 0.667, α = 0.7, B0 = 156 MPa, l̃0 = 2850,
l̃1 = 855, β = 1, κ2 = 750, and ε = 0.

It is worth noting that h1 has the dimension of length,
whereas h1g1 is dimensionless. Therefore, h1 and g1 could
well be related to some geometric properties of the grains
such as its form and diameter D, as well as the restitution
coefficient r . Comparing our expression for the seismic stress
to the corresponding expressions of Ref. [29], to lowest order in
ρ, we indeed find h1 = √

π/4 D and g1 = √
π/6(1 − r2)/D,

implying h1 = 3.4 × 10−4 m for D = 1.2 mm and and 4.7 ×
10−4 m for 1.6 mm. (Reference [29] is a review of realistic
two-dimensional models for dense granular media.)

A. Approximate model

Although our calculation is executed using the above
complete expressions, we shall argue in the discussion below
employing an approximate model, which is rather more simple
and obtained under several assumptions. The first one is that all
diagonal elements of the strain tensor uij are equal. The second
assumption is that the zeroth order term γ0 in the expansion
of transport coefficient γ from Eq. (20) might be neglected,
implying that d → ∞. Note that γ0 becomes significant only
at very small shear rates corresponding to the quasi-elastic
limit and, as will be shown later, bounds the rate-independent
regime from below. In our derivations we keep the lowest order
elastic terms which is the third simplification. Finally, the total
shear stress and the pressure can be split as

P0 = σ (c)
yy + PT , (27a)

σ0 = σ (c)
xy + σ (v)

xy , (27b)

where σ (c)
yy and σ (c)

xx are the elastic contributions:

σ (c)
yy = (1 − α)B

√
�

(
� + u2

s

2ξ�

)
, (28a)

σ (c)
xy = −B

√
�

2
us

[
α2

(
� + u2

s

2ξ�

)
+ 2

ξ
(1 − α)

]
, (28b)

and PT and σ (v)
xy are, respectively, the Tg-generated, seismic

pressure and the viscous shear stress

PT = ρcp

40

h1

g1

ρ2
n γ̇ 2

(1 − ρn)9/10+ε
, (29a)

σ (v)
xy = ρcp

√
h3

1

8g1

γ̇ 2

(1 − ρn)β+3ε/2
. (29b)

The elastic shear strain and compression are mere functions of
the density and transport coefficients and are

us � 1 − α

l̃0(1 − ρn)
, � � κ2

l̃1
us. (30)

IV. DISCUSSION

In our calculations we consider a pressure-controlled
system keeping the pressure at the top P0 = 10 kPa and
varying the shear rate γ̇ . The results of calculations are shown
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FIG. 2. (Color online) Shear stress σ0 (a) and density ρ (b) vs
shear rate γ̇ for P0 = 10 kPa and different material parameters g1, h1:
g1 = 3.6 m−1, h1 = 4.7 × 10−4 m (red [dark gray]); g1 = 1.4 m−1,
h1 = 3.4 × 10−4 m (black); g1 = 0.32 m−1, h1 = 3.4 × 10−4 m
(orange [light gray]). Above some critical values for the shear rates
(shown by filled circles), the density ρ < ρlp , and, as a result,
there are no elastic contributions. The values for the inertia number
I = γ̇ D/

√
P0/ρg [15] are estimated to be 0.60, 0.33, and 0.18 at the

critical values designated by, respectively, red (dark gray), black, and
orange (light gray) filled circles.

in Figs. 2 and 3 where the shear stress σ0 and the density ρ are
plotted as a function of the shear rate γ̇ . We can distinguish
between three different regimes, which are summarized below.

A. Rate-independent regime

The rate-independent regime is characterized by almost
unchanged σ0, ρn, and uij upon variation of γ̇ by a few orders of
magnitude [plateaus in Figs. 2(a) and 2(b)]. Moreover, within
this stationary regime the elastic terms, σ (c)

yy and σ (c)
xx , give

dominant contribution, so that the seismic pressure PT and the
viscous shear stress σ (v)

xy might be neglected, leading to

P0 = σ (c)
yy , (31a)

σ0 = σ (c)
xy . (31b)

Each point of the plateaus corresponds to the critical state
which is a stationary solution of the evolution equations for the

100 200 300 400 500 600 700
.γ (s

-1
)

0.82

0.84

0.86

0.88

0.9

0.92

0.94

ρ/
ρ cp

FIG. 3. (Color online) Density ρ from Fig. 2(b) versus shear rate
γ̇ in lin-lin plot. Here only parts of the solutions with ρ > ρlp are
depicted.

elastic strain. We estimate at which σ0 and ρn for a fixed value
of P0 the rate-independent regime sets in. For this purpose
we insert the expressions (30) for us and � into Eqs. (28a)
and (28b) and solve a resulting set of two algebraic equations
(31a) and (31b) with respect to σ0 and ρn. We found σ0 �
8.3 kPa and ρn � 0.96, which is in a perfect correspondence
with the exact numerical calculations [compare with the values
of plateaus shown in Figs. 2(a) and 2(b)].

Remarkably, the rate-independent regime is energetically
stable in a sense of the criteria (15,17). However, at some
lower shear rates the density drastically decreases with γ̇ ,
and a solution becomes finally unstable [no solutions below
a certain γ̇ in Figs. 2(a) and 2(b)]. It is worth noting that the
value of d bounds the rate-independent regime from below
that is captured by the exact numerical calculations only.

B. Rapid flow (Bagnold) regime

The rapid flow regime takes place at high values of shear
rates, γ̇ � 300 Hz [see Fig. 2(a)] and is characterized by a
quadratic growth of the shear stress σ0 with γ̇ . Indeed, in the
limit of large shear rates the viscous and seismic terms prevail
over the elastic ones, so that we can write

P0 = PT , (32)

σ0 = σ (v)
xy . (33)

Note that Eqs. (32) and (33) are exact when ρ < ρlp since
elastic contributions become energetically unstable as was
discussed before. Thus, we obtain a typical stress-shear
relationship for the rapid flow, σ0 ∼ γ̇ 2, the so-called Bagnold
scaling [32].

Dividing the right- and left-hand sides of Eq. (32) by
the right- and left-hand sides of Eq. (33), respectively, a
simple algebraic equation for the density ρn can be derived.
The expressions for us and � are again given by Eqs. (30).
However, the elastic contributions (when present) are much
smaller than that within the rate-independent regime where
the density reaches its highest possible value [plateaus in
Fig. 2(b)].
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C. Transient regime

The transient regime occurs at moderate shear rates and
is located between the rapid flow and the rate-independent
regimes. We refer to it as to transient because all contributions
from elastic, viscous, and seismic terms are essential, and
none of them can be neglected. It is seen that a shear stress
might exhibit an unexpected dip with increasing shear rate that
looks counterintuitive at a first sight. This can be explained as
follows. As before, we split contributions to σ0 into two parts,
elastic and viscous ones, writing symbolically σ0 = σ (c)

xy +
e1γ̇

2. Let us start from the rate-independent regime for which
σ0 � σ (c)

xy . As a shear rate increases, the viscous contributions
start to play a role turning a functional dependence of σ0

towards e1γ̇
2. However, this route is accompanied by a drastic

decrease of the density leading to diminishing contributions
from the elastic terms in accordance with Eq. (30). The steeper
the density decrease, the more rapidly elastic contributions
vanish. In two of three examples presented in Fig. 2 such
an abrupt density decrease [see Fig. 2(b)] leads to the dip
in the shear stress because the diminishing contribution of
the elastic terms is not compensated by the quadratically
grown viscous terms within this interval of the shear rates.
With further increase of γ̇ , the viscous contributions become
more significant as compared to the elastic ones, which finally
vanish due to energetic instability and a system switches to the
Bagnold regime, for which σ0 = e1γ̇

2.

In further study we explored the system’s response upon
variation of different material parameters and realized that the
dependence σ0(γ̇ ) shown in Fig. 2(a) is qualitatively rather
universal. We found that the plateaus, representing the rate-
independent regime, can easily be extended towards smaller
and/or larger values of the shear rates, and the value of a dip can
also be easily regulated or suppressed. It is worth noting that
we can reproduce our curve σ0(γ̇ ) to a rather good accuracy
using the empirical formula (1) from Ref. [2] adapting the
fitting parameters accordingly.

V. CONCLUSIONS AND OUTLOOK

In this paper we analyzed all stationary homogeneous
solutions in the simple shear geometry using the theory of
granular solid hydrodynamics. We demonstrated the existence
of three different regimes, namely, the rate-independent,
transient, and rapid flow regimes, which appear subsequently
as the shear rate is increased starting from low values. In
particular, as a natural consequence of our equations we found
a dip in the shear stress-rate functional dependence, recently
revealed in the experiments dealing with top-rotating torsional
shear cell. Such a counterintuitive dependence is related to
the fact that elastic contributions start to decrease drastically
(owing to a density decrease) when the shear rate reaches a
certain value.
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