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For the driven-dissipative system of two coupled bosonic modes in a nonlinear cavity resonator, we
demonstrate a sequence of phase transitions from a trivial steady state to two distinct dissipative time
crystalline phases. These effects are already anticipated at the level of the semiclassical analysis of the
Lindblad equation using the theory of bifurcations and are further supported by the full quantum treatment.
The system is predicted to exhibit different dynamical phases characterized by an oscillating non-
equilibrium steady state with nontrivial periodicity, which is a hallmark of time crystals. We expect that
these phases can be directly probed in various cavity QED experiments.
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Introduction.—Nonlinear quantum optical effects are of
great importance for fundamental research and various
applications, in particular in quantum information tech-
nologies [1–6]. Realistic settings of quantum experiments
require considering sizable nonlinear effects and interplay
between external driving and dissipation caused by the
fundamentally open nature of such systems. A system of
paramount importance is a driven-dissipative model of
bosonic modes with the Kerr nonlinearity [7–11].
For example, a qubit encoded in quantum harmonic
oscillators [12] can be made stable against environment-
induced decay using an interplay between Kerr-type
interactions and squeezing [13–15]. On the fundamental
side, nonequilibrium bosonic systems with Kerr nonlinear-
ities may exhibit novel dynamical phases, such as time
crystals [16–18].
Time crystal (TC) phases of matter have been predicted

theoretically in isolated Floquet driven systems and driven-
dissipative systems [19–31], and have recently been
observed experimentally [32–37]. Time crystals were
originally introduced as the temporal analogue of spatial
crystals where the time translation symmetry of a system is
broken [38]. Crucially, the time crystalline phase of matter
would be resistant to entropy increase [32,39–41].
This property makes the TC phase an interesting candidate
for quantum hardware devices, where entropy growth
and spontaneous decay lead to corruption of stored
information.
In this Letter we demonstrate that a system of two

driven-dissipative coupled bosonic modes trapped in an

optical cavity with Markovian dissipation exhibits in-
triguing dynamical behavior featuring inter alia time-
crystalline phases. In the semiclassical regime, the system
undergoes a series of sub- and supercritical Hopf bifurca-
tions between different stationary solutions. Hopf bifurca-
tions are responsible for periodic dynamics emerging in the
form of limit cycles in the phase space of a system [42]–a
phenomenon that is absent in a single-mode bosonic
system with a Kerr nonlinearity [43,44]. Most importantly,
we find period-doubling behavior suggesting the existence
of multiple distinct, nontrivial TC phases in the system.
The presence of limit cycles on the semiclassical level
turns out to be an indicator for resulting TC phases
in the full quantum dynamics, where multiple non-
equilibrium phase transitions in the form of the closure
of the dissipative gap in the Liouvillian spectrum are
observed.
Our analytical approach is based on a combination of

Lie-algebraic disentanglement techniques [45–51] and a
semiclassical approximation (see Supplemental Material
[52]). The results in the quantum regime are found using
exact diagonalization (ED) methods and Monte Carlo
simulations for trajectories of observables, which allow
us to investigate larger system sizes. Using a combination
of all the aforementioned methods, we conclude that
different time crystalline phases exist in a broad range of
values of the single-photon driving amplitude.
The model.—We consider two driven-dissipative coupled

modes in a cavity [54] (see Fig. 1) described by the
following Hamiltonian (ℏ ¼ 1):
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Ĥ ¼ ωaâ†âþ gb̂†âþ g�b̂â† þ ωbb̂
†b̂

þ E1ðtÞb̂þ E�
1ðtÞb̂† þ

U
2
b̂†b̂†b̂ b̂; ð1Þ

where â, b̂ (â†, b̂†) are bosonic annihilation (creation)
operators. Parameters ωj > 0 are the cavity frequencies of
the a and b modes, g is the coupling strength between the
modes, E1ðtÞ ¼ E1eiω1t determines the driving protocol of
the b mode, and U is the Kerr interaction strength. In
nonlinear media U ∼ n2ω2

0=ðn20VeffÞ, where n0;2 are linear
and nonlinear refractive indexes, ω0; Veff are the mode
frequency and effective volume, respectively. Both a and b
modes are coupled to a zero-temperature Markovian
environment. The a mode experiences only single-photon
losses, whereas the b mode is prone to single- and two-
photon losses [55]. The overall time evolution of the system
is then governed by the Lindblad equation [56],

_ρ ¼ −i½Ĥ; ρ� þ γa
2
D½â�ρþ γb

2
D½b̂�ρþ χb

2
D½b̂2�ρ≡ Lρ;

ð2Þ

whereD½L̂�ρ ¼ 2L̂ρL̂† − L̂†L̂ρ − ρL̂†L̂ is the dissipator, Ĥ
is given by Eq. (1), and L is the Liouvillian. Moreover,
γj > 0 and χj > 0 represent the cavity single and double
mode loss rates, correspondingly.
Semiclassical analysis.—In the semiclassical approxi-

mation, the Lindblad equation is reduced to the master
equation in a rotating frame with driving frequency ω1,
where the exponential term eiω1t vanishes [52]:

_ξðtÞ ¼ Aðjzj2ÞξðtÞ þ η; ð3Þ

where

Aðjzj2Þ ¼

0
BBB@

κ̃a −ig� 0 0

−ig φðjzj2Þ 0 0

0 0 κ̃�a ig

0 0 ig� φ�ðjzj2Þ

1
CCCA: ð4Þ

Here thevectors ξ¼ðy;z;y�;z�ÞT and η ¼ ð0;−iE�
1; 0; iE1ÞT

are defined by yðtÞ¼ expðκ̃atÞTr½âρðtÞ� and zðtÞ¼ eiω1tbðtÞ,
φðjzj2Þ ¼ κ̃b þ Kjzj2, κ̃j ¼ −iΔj − γj=2, Δj ¼ ωj − ω1 for
j ¼ a, b, and K ¼ −χb − iU.
Results.—We proceed with the analysis of the semi-

classical steady-state solution by setting _ξ ¼ 0 into Eq. (3)
and obtain an S shape [see solid and dashed red curves in
Fig. 2(a)] that is well known in systems with Kerr-type
interactions [43,44,57]. Upon closer inspection, we
uncover novel nontrivial system behaviors. The analysis
of the dissipative system (3) is done using available tools
developed for the theory of bifurcations [42,58,59]. In our
system we find that the steady state solutions have several
interesting features, summarized in Fig. 2(a). The steady
state outside of the region of bistability (S shape) is
represented by a stable stationary solution. Choosing an
initial state in this interval of E1 and letting the system time
evolve, it will relax to a stationary value on one of the
(solid) red curves in Fig. 2(a). Most importantly, we find an
interval of E1, where limit cycles are other possible time-
dependent steady state solutions. In order to probe the
system’s behavior in more detail, we use the following
approach. We start by considering a coherent drive E1 ¼ 0,
for which the steady state solution corresponds to zero
particle number excitations in the b and a modes, as
expected. As we gradually increase the value of the
coherent drive [for simplicity we assume argðE1Þ ¼ 0],
after some transient behavior the system will settle into a
respective stationary solution for the b-expectation value,
which lies on the lower solid red curve starting from z ¼ 0
in Fig. 2(a). In this manner we can iteratively increase the
driving amplitude, following the path outlined by the
magenta arrows going left to right in Fig. 2(a).
As we increase the driving amplitude to within the region

of bistability, we encounter a region of instability between
the points H1 and H2 [designated by a dashed curve in
Fig. 2(a) between the aforementioned points]. The tran-
sition from stable to unstable solutions is accompanied by a
subcritical Hopf bifurcation at H1 and a supercritical Hopf
bifurcation at H2. Increasing the driving amplitude beyond
H1, the system will jump to a limit cycle solution, so that
the variable z oscillates in time between some maximal and
minimal values as designated by solid blue curves in this
figure. The limit cycles for the driving amplitudes lying
between the points PD2 and PD1 have qualitatively the

FIG. 1. Schematic representation of our setup: A cavity with
two bosonic modes a (orange cloud) and b (blue cloud) coupled
with a strength g to each other, see Eq. (1). A Kerr interaction
with a strengthU is generated by a nonlinear element (red square)
for the bmode. The cavity is driven coherently by a single photon
drive E1. The cavities allow for the decay of the modes with the
single-photon rates γa;b and two-photon rate χb (orange and blue
arrows).
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same double-loop structure as exemplified in Fig. 2(c) for
Ẽ1=γb ≈ 16. If one keeps increasing the driving amplitude,
probing the limit cycle solutions for each value of E1,
the limit cycles will half their period at the point PD1 in
Fig. 2(a). As E1 increases further, their dimensions in the
phase space decrease and eventually shrink to zero at the
threshold point H2, where the periodic solution ceases to
exist (via the supercritical Hopf bifurcation). Above this
threshold value, there is a stable stationary state between
the points H2 and SN1.
In addition, we disclose the bifurcation scenario follow-

ing an inverse route, starting from the stationary state
slightly below the saddle-node bifurcation, SN1, and
gradually decreasing the driving amplitude E1 [green
arrows going right to left in Fig. 2(a)]. This will lead to
a partially different dynamical scenario associated with the
hysteretic behavior shown in this figure. Specifically, when
one decreases E1 belowH2, limit cycles are time-dependent
steady states in the interval between H2 and PD1, as
expected. Subsequently, the limit cycles double their period
at PD1. For driving amplitudes below H1, unstable limit
cycles are also possible solutions [dashed limit cycle in
Fig. 2(b)] that, however, cannot be experimentally
observed. At PD2, the limit cycles half their period.
With further decrease of E1, the stable and unstable limit
cycles ultimately annihilate at the limit point cycle (LPC).
When decreasing the driving amplitude below the LPC
point, the time-dependent steady state will jump down to a
stationary state lying on the lower red curve. Thus, on the
semiclassical level, the system demonstrates a series of

continuous and discontinuous phase transitions with hys-
teretic behavior. We note that the dynamical scenarios
disclosed in this Letter are quite universal, taking place for
a wide range of system parameters. A more in-depth
discussion on further semiclassical scenarios and their
quantum counterparts is a subject of a forthcoming
publication.
In the next step, we compare the semiclassical results to

the full quantummechanical dynamics of the system. Using
a representation of bosonic creation and annihilation
operators in a truncated Fock basis, we compute the
spectrum of our system. The thermodynamic limit is
reached when the driving amplitude approaches infinity,
E1 → ∞, while the product E1

ffiffiffiffi
U

p
is kept fixed (the so-

called “weak interaction limit”) [19,60] and the product of
E1

ffiffiffiffiffi
χb

p
remains constant. We introduce a dimensionless

parameter N to keep track of the particle number and
quantify the large N limit as follows:

E1 ¼ Ẽ1

ffiffiffiffi
N

p
; U ¼ Ũ

N
; χb ¼

χ̃b
N

: ð5Þ

We obtain the quantum mechanical solution versus N as
depicted in Fig. 3. In general, the quantum mechanical
results agree to a large extent with the semiclassical
predictions. In the region of optical bistability shown in
Fig. 2(a) (7≲ Ẽ1=γb ≲ 20), the dissipative gap, defined as
the largest real part of the nonzero eigenvalues, closes
rapidly, indicating the presence of a dissipative phase
transition within this region. As we increase the driving
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FIG. 2. (a) Solid (dashed) red curve depicts the semiclassical stable (unstable) steady state solution for the b-mode particle number,ffiffiffiffiffi
nb

p ¼ jzj, as a function of the driving amplitude E1. The points H1 and H2 are sub- and supercritical Hopf bifurcations, respectively.
Stable (unstable) limit cycles emerging from H2 (H1) are depicted using the solid (dashed) blue lines, indicating the absolute values in
between which the oscillations occur. Stable and unstable limit cycles annihilate at the limit point cycle (LPC). SN1;2 are saddle-node
points of the optical bistability. PD1 (PD2) corresponds to a period-doubling bifurcation when passing this point from upper (lower)
values of E1. Between the points PD1 and PD2 is the region of limit cycles with a double loop structure as shown in (c). The magenta and
green arrows indicate the forward and backward sweeping paths as outlined in the main text. (b),(c) Examples of normal and period
doubled limit cycles (solid blue line) and unstable limit cycle (dashed blue line) in the (Re½z�, Im½z�) plane. The red dot represents a
stationary state lying on the lower red curve from (a). (d),(e) The Fourier spectrum of Re½z� of the dynamics is represented by stable limit
cycles shown in (b) and (c). The system parameters are γa ¼ χb ¼ 1, g ¼ U ¼ Δa ¼ 10 and Δb ¼ −20 (computed in units of γb).
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amplitude to Ẽ1=γb ≈ 13 (starting from Ẽ1=γb ≈ 7), a pair of
eigenvalues starts to approach the imaginary axis as a
function of N [see Fig. 3(c)]. The resulting quantum
oscillations are the quantum mechanical analogue of the
limit cycles observed in the semiclassical case and indicate
the time-crystalline phase. This analogy between semi-
classical and quantum oscillations is derived by comparing
the inverse of the imaginary parts of the eigenvalues
responsible for quantum oscillations with the periods of
limit cycles [see Figs. 2(d) and 2(e)]. We also note that the
peaks in the Fourier spectra of Figs. 2(d) and 2(e) occur at
values that scale with internal parameters of the system
(e.g., Δa;b, U, γa;b, etc.) in a complex way set out by a
specific form of our nonlinear system (3). When increasing
the driving amplitude further to a value of Ẽ1=γb ≈ 16
[Fig. 3(d)], another set of eigenvalues (enclosed in ovals)
starts to approach the imaginary axis with approximately
half the imaginary value of the modes that were observed
before (enclosed in arrows). Thus, there is a strong
indication of quantum behavior resembling the period
doubling found in the semiclassical case that shows up
in a similar parameter range. The appearance of the modes
enclosed in ovals then indicates a period doubled time
crystalline phase. Unlike in the semiclassical case, how-
ever, we cannot find a signature of period halving in the
quantum regime as we increase the driving amplitude
beyond Ẽ1=γb ¼ 16. Rather, the upper bound on the driving

amplitude for the system being in the period doubled time
crystal phase remains undetermined. Furthermore, in the
parameter regime Ẽ1=γb ≳ 16 the gap closure behavior is
dominated by the oscillating (hard) modes rather than the
(soft) modes whose eigenvalues lie on the real axis.
Evidently, a scenario in which different modes close the
gap in qualitatively different ways indicates that the system
experiences a series of different phase transitions. The
sequence of phase transitions as a function of Ẽ1=γb
between steady state and different time crystalline phases
is highlighted in Fig. 3(a) using the colored background.
Different phases were identified by the relative magnitude
of the gap, the eigenvalues for the modes characterizing the
time crystal phase [enclosed by arrows in Figs. 3(c) and 3
(d)], and the period doubled modes [enclosed by ovals in
Fig. 3(d)]. At a value of Ẽ1=γb ≈ 16, the time crystal mode
associated with the period doubled mode is practically as
dominant as the usual time crystal mode. The edges of the
coloring in Fig. 3(a) are blurred, as the exact behavior of the
gap for larger values of N and Ẽ1 is currently outside of
computational capabilities. A full comparison of the
periods of oscillatory quantum and semiclassical solutions
is presented in Fig. 3(e) [52], where we also present the
periods of the time crystalline phase obtained through
Monte Carlo simulations [61].
To summarize, we compare semiclassical and quantum

approaches: In Fig. 2 we observe the appearance of limit
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FIG. 3. (a) The dissipative gap as a function of the driving amplitude Ẽ1=γb. Qualitatively different phases are colored in by hand,
based on the underlying gap closure behaviors. (b) Eigenvalues of the first few decaying modes λi for Ẽ1=γb ¼ 5 and different values of
N. Here, the gap does not close as we increase N. (c) The spectrum for Ẽ1=γb ¼ 13. The arrows enclosing symbols depict how the
eigenvalues converge towards the imaginary axis [ReðλiÞ ¼ 0] as a function of N. (d) Spectrum for Ẽ1=γb ¼ 16. An additional
eigenvalue enclosed in rectangles features gap closing behavior with increasing N, having an imaginary part that is about half as large as
the original eigenvalues enclosed within the arrows. This eigenvalue resembles the period doubling found in the semiclassical case.
(e) Periods of quantum oscillations, T ¼ 2π=ImðλiÞ, as a function of the driving amplitude. All system parameters are chosen the same
as in Fig. 2. The results from the quantum trajectories are obtained by averaging 3000 trajectories for a duration of tγb ¼ 15 with
γbdt ¼ 0.005 and using the software provided in [61].
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cycles for driving amplitudes between the pointsH1 andH2

which indicates a broken continuous time translation
symmetry of the set of equations (3) within this interval
of E1. This is manifested by the discrete peak structure in
Figs. 2(d) and 2(e). In the quantum case we observe nearly
nondecaying (almost zero real part of the Liouville eigen-
values) oscillating coherences at corresponding frequen-
cies, see Figs. 3(c) and 3(d). Semiclassical peaks in
Figs. 2(d) and 2(e) correspond to the points enclosed by
the arrows and ovals in Figs. 3(c) and 3(d), respectively.
Conclusion.—In this Letter we demonstrated that a

system of two coupled bosonic modes in a dissipative
cavity exhibits rich behavior related to time crystalline
phases. Based on the semiclassical approach, we have
identified a wide parameter range in which a time crystal-
line phase emerges in the form of usual limit cycles as well
as a new kind of novel unexpected limit cycle featuring a
doubled-loop structure associated with period doubling.
The use of the powerful bifurcation theory turned out to be
essential in uncovering the rich dynamical scenarios of our
system. Results of computations in the quantum regime in
the identified parameter range qualitatively agree with the
global picture sketched by the semiclassical approach: A
series of quantum phase transitions is observed with
oscillating coherences at a range of parameters where,
semiclassically, Hopf and period-doubling bifurcations
emerge. These quantum transitions are accompanied by
the closure of the Liouvillian gap in the thermodynamic
limit. Computational limitations do not allow us to probe
the system at sufficiently large excitation number N to
make more precise, quantitative predictions on the phase
transitions of the model discussed in this Letter. At this
stage, experimental investigations, like in [7,8,10,11] are
the natural next step for a detailed investigation of the
predicted nonequilibrium phase transitions.
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