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Abstract A wide range of interesting dynamical phenomena have been observed in ne-
matic liquid crystals in the past decades, that are induced by strong laser radia-
tion. We review the latest theoretical advances in describing and understanding
these complex phenomena.
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Introduction

The optics of liquid crystals has been a widely investigated subject for
decades, whose importance stems in the enormous range of technological ap-
plications where liquid crystals are utilized for their optical properties. The
most important advantage of liquid crystals is that these optical properties can
be changed and controlled quickly and easily. The basic physical origin of
these phenomena is the subject of a number of review papers [1, 2] and mono-
graphs [3, 4].

A very interesting group of phenomena are those associated with the so-
called light-induced director reorientation in nematic liquid crystals (or nemat-
ics for short). Liquid crystals consist of elongated molecules (rod shaped, or
disc shaped), which have anisotropic polarizability. In a nematic liquid crys-
tal phase, where the molecular orientation is ordered, the propagation of light
waves is then governed by an anisotropic dielectric tensor. The optical axis of
the nematic is aligned along the local direction of the molecular axis, which is
called the director. On the other hand, the anisotropic polarizability also means
that an orienting torque is exerted on the molecules by any electrical field - in-
cluding the electric field of the light. Thus an intense light, whose electric field
is strong enough to reorient the molecules (i.e. turn the director), alters the
optical properties of the medium it propagates through. This leads to a large
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variety of nonlinear optical responses of the liquid crystal medium. Some of
these phenomena are rather spectacular (such as the ring pattern due to light
self-phase modulation) and are sometimes collectively referred to as the Giant
Optical Nonlinearity of liquid crystals [1, 2].

Among these phenomena, there are a number of situations where a constant
illumination of the liquid crystal leads to persistent oscillation of the molecules,
and sometimes even to chaotic behaviour. There has been considerable effort
recently to observe, describe and understand these phenomena. A lot of ex-
periments have been performed and theoretical models have been proposed.
In some cases, there is sufficient agreement between theory and experiment,
in other cases not. In all cases it is clear that the dynamical behaviour ex-
cited by light in nematics is very rich - numerous bifurcations, transitions and
regimes have been predicted and observed. In this paper we review recent the-
oretical developments in modeling, simulating and understanding the physical
origins of these phenomena. We put special emphasis on explorations in the
"nonlinear domain", where considerable progress has been made during the
past few years. Numerous instabilities and bifurcations were found and they
helped interpret experimental observations a great deal. By no means is the
task accomplished however - there are a number of experimental situations
which have been considered theoretically only very superficially, or not at all.
Understanding these complex phenomena is, as yet, far from complete.

1. Simple setups - complicated phenomena

The basic experimental setup that can be used to generate the complex non-
linear behaviour in nematics is deceptively simple. A thin cell is made from
two parallel glass plates enclosing the nematic layer, whose thickness is the
order of L = 10 − 100µm. The glass plates are coated with some chemical
surfactant to achieve a fixed orientation of the nematic director at the interface.
The cell is irradiated with a continuous laser beam, and the reorientation of
the molecules induced by the light is monitored by measuring the changes in
intensity and polarization of the outcoming light. Sometimes a separate probe
beam is used whose changing polarization and intensity supplies information
on director reorientation (Fig. 1). The key properties of the setup are the thick-
ness of the nematic layer, the orientation of the director at the boundaries, the
polarization, angle of incidence, and intensity of the light.

Depending on the relative orientation of the vector of polarization of light
and the initial director orientation, we can distinguish two different cases. In
one case, the two directions enclose some angle 0 < β < π/2 and so an
orienting torque acts, that turns director for arbitrarily small light intensity
- there is no threshold intensity required (though considerable intensity may
be needed for appreciable changes in the director orientation as the elasticity
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laser

nematic liquid crystal
between glass plates

detection of
scattered light

Figure 1. Typical experimental setup: a thin layer of nematic liquid crystal is sandwiched
between two glass plates and irradiated with laser light. The scattered light (or the light of a
probe beam) is monitored behind the cell.

of the nematic counteracts the reorientation). In the other case the director
orientation is parallel or perpendicular to the polarization vector, and so the
orienting torque acting on the director is zero. However, even though the con-
figuration where the director is perpendicular to the polarization is always an
equilibrium, above a certain light intensity it will be unstable. Thus above a
certain threshold intensity director reorientation will take place. This is the
so called Light-Induced Freedericksz Transition or Optically Induced Freeder-
icksz Transition (OFT) [1, 3], which is analogous to the classical Freedericksz
transition induced by static (or low frequency) electric or magnetic fields. This
transition can already lead to time dependent behaviour in certain geometries,
in other geometries the simple static reoriented state undergoes further bifur-
cations as the light intensity increases, and produces complex, time dependent
behaviour.

2. Theoretical description

Basic equations

The starting point for the description of these complex phenomena is the
set of hydrodynamic equations for the liquid crystal and Maxwell’s equation
for the propagation of the light. The relevant physical variables that these
equations contain are the director field n(r, t), the flow of the liquid v(r, t)
and the electric field of the light Elight(r, t). (We assume an incompressible
fluid, and neglect temperature differences within the medium.) The Navier-
Stokes equation for the velocity v can be written as [5]

ρm (∂t + v · ∇)vi = −∇j(p δij + πij + T visc
ij ) , (1)
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where ρm and p are the density and the pressure of the nematic, respectively.
πij is the Ericksen stress tensor defined as

πij =
∂F

∂(∂jnk)
· ∂ink i = x, y, z (2)

(Summation over doubly occurring indices is assumed.) In Eq. (2) F is the
free energy density which consists of the elastic part

F (elast) =
K1

2
(∇ · n)2 +

K2

2
(n · ∇ × n)2 +

K3

2
(n×∇× n)2 (3)

and the external part which in our case is

F (ext) = −
εa
16π

| n · Elight |
2 . (4)

Here K1, K2, K3 are, respectively, the splay, twist and bend elastic constants
[5] and Elight is the amplitude of the optical electric field. Any other external
fields which act on the director (static or low frequency electric or magnetic
fields for example) can be incorporated into F (ext) by adding similar terms.
The viscous stress tensor T visc

ij in Eq. (1) is written in terms of the six Leslie
coefficients αi [6],

−T visc
ij = α1ninjnknlAkl + α2njNi + α3niNj + (5)

α4Aij + α5njnkAki + α6ninkAkj .

The symmetric strain-rate tensor Aij and the vector N, which gives the rate of
change of the director relative to the fluid, are

Aij = (∂ivj + ∂jvi)/2 , (6)

N = (∂t + v · ∇)n − ω × n .

Here ω = (∇× v)/2 is the local fluid rotation. The Leslie coefficients satisfy
the Parodi relation α2 + α3 = α6 − α5 [7]. In addition, the assumption of
incompressibility means that the density ρm is constant and so ∇ · v = 0. The
equation for the director n is

γ1(∂t + v · ∇ − ω×)n = −δ⊥ (γ2An + h) , (7)

where γ1 = α3 − α2 is the rotational viscosity and γ2 = α3 + α2. h is the
molecular field obtained from the variational derivatives of F :

hi =
δF

δni

=
∂F

∂ni

− ∂j

(

∂F

∂ni,j

)

, i = x, y, z . (8)

and the projection operator δ⊥ij = δij −ninj in Eq. (7) ensures conservation of
the normalization n

2 = 1.
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In addition, the electric field must be obtained from Maxwell’s equations
for light propagation, which, for a nonmagnetic material in the absence of any
currents and charges can be written as:

∇×H =
1

c
ε
∂E

∂t
, ∇ · (εE) = 0

∇×E = −
1

c

∂H

∂t
, ∇ · H = 0 (9)

with the spatially dependent dielectric tensor

εij = (ε⊥ + iγ⊥) δij + (εa + iγa)ninj, (10)

where εa = ε‖ − ε⊥ [γa = γ‖ − γ⊥] is the real [imaginary] part of the di-
electric anisotropy. The imaginary part which describes absorption is usually
negligible in pure nematics, but must be taken into account if the nematic has
been doped by absorbing dyes.

The boundary conditions needed for an unambiguous solution of the PDEs
are usually taken to be a fixed orientation of the director (strong anchoring)
and vanishing velocity field (no-slip) at the nematic-glass interface.

The equations (1), (7) and (9) constitute the starting point for any theoreti-
cal description of dynamical phenomena induced by light in nematics. Clearly,
light propagation is influenced by the spatial distribution of the director ori-
entation through the dielectric tensor (10), and the electric field of the light
influences the orientation of the director through the free energy (4) whose
derivatives (8) enter the director equation (7). The fluid flow must also be
added, as flow is coupled to the director, so any dynamical process that leads
to director reorientation will also induce flow even in the absence of pressure
gradients. This is the so-called backflow.

Some general remarks

The above equations contain three distinct timescales: the time it takes the
light to traverse the cell τl = L/c, the momentum diffusion time τvisc =
%mL

2/γ1 and the director relaxation time τ = γ1L
2/π2K3. These usually dif-

fer by many orders of magnitude, since typically τl ∼ 10−13s, τvisc ∼ 10−6 s
and τ ∼ 1s, so the slow variable of the system is clearly the evolution of the
director which enslaves the other two modes. The electric field of the light can
thus be expressed from Maxwell’s equations as a function of the instantaneous
value of n, and can be considered as a self-consistency relation or a constraint.
In a similar way, due to the vastly different magnitude of τ and τvisc, inertial
terms in the Navier-Stokes equation can be neglected and the flow of the ne-
matic can be expected to be determined entirely by the director components
and their time derivatives.
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These equations are a very complex set of nonlinear partial differential equa-
tions. The main difficulty lies in the fact that even though, Elight and v are
theoretically defined by n at every instant t, in general it is very hard, if not
impossible to express them by n. Most often we can only say that "Elight and
v are a solution of this and that", where "this and that" will be a partial differen-
tial equation. Even when Elight and v can be expressed by n, the expressions
will be complicated integral relationships. To gain any meaningful solutions
(even using computers) one must resort to further assumptions and approxima-
tions. Analytic results are available only under the most restrictive approxima-
tions and simplest cases. Numerical solutions are obtainable under much less
restrictive conditions, but yield proportionally less insight into the physical ori-
gin of the phenomena. A delicate balance is needed when applying restrictive
assumptions to the solutions in order to obtain solvable equations, and at the
same time to keep physical phenomena within grasp. Should the assumptions
be too restrictive, we will readily obtain solutions that miss important aspects
of the dynamics or have no connection with real physical processes at all. A
constant comparison between theoretical results and experimental observations
is needed to avoid pitfalls.

There are several major simplifications that can be used to tackle these equa-
tions. First of all, fluid flow is almost always neglected altogether. Then the
Navier-Stokes equation is not needed at all, v is no longer a variable and we
only need to solve the director equation (7) which will now be

γ1∂tn = −δ⊥h. (11)

h will still contain the electric fields through (4) and (8), so (11) is still cou-
pled to (9). This approximation is sometimes justified by arguments that flow
plays only a passive role (backflow) and makes only a quantitative difference.
Sometimes it is argued that when reorientation is small, the effect of flow can
be included in a renormalized (reduced) rotational viscosity. This however,
turns out not always to be true. A renormalized viscosity is applicable strictly
only in a linear approximation (even then not always) and backflow turns out to
make a qualitative difference in some cases. Thus the real reason why flow is
usually neglected is simply because it reduces the complexity of the equations
a great deal. Explicit treatment of backflow has been attempted only in very
few cases [8–10]. Even without flow, obtaining E from n remains a formidable
task and usually more approximations are needed.

Another frequently employed simplification is the 1D assumption, namely
that all variables depend only on one coordinate, the one transversal to the
plane of the nematic layer, say the z coordinate. This means that the incident
light should be an infinite plane wave (hence this approximation is often called
the infinite plane wave approximation) and, by virtue of incompressibility and
the boundary conditions v = (vx(z, t), vy(z, t), 0) which grants an enormous
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simplification of the initial equations [9]. The application of this assumption
is slightly controversial. Experimental setups rarely use laser beams whose
width w0 is so much larger than that of the cell L, that would justify it. Also,
there is evidence that even if the laser beams were ideal plane waves, transverse
degrees of freedom could not be neglected, for spontaneous pattern formation
would occur [11, 12] (see the last section). However, current experimental
evidence leads us to believe that the width of the laser beam w0 plays a crucial
role in the observed phenomena only if the cell width L is about two times
larger (w0/L ≈ 0.5) [13]. Theoretical results derived using the 1D assumption
compare remarkably well to experimental observations obtained using laser
beams with w0/L ≈ 1. Due to this, the 1D assumption is relaxed very rarely.

In the 1D approximation the director equations (7) reduce to [9]:

γ1∂tnx + nz

[

(α2 − γ2n
2
x)∂zvx − γ2nxny∂zvy

]

= −
[

δ⊥ h

]

x

γ1∂tny + nz

[

(α2 − γ2n
2
y)∂zvy − γ2nxny∂zvx

]

= −
[

δ⊥ h

]

y
. (12)

Following the concept of adiabatic elimination, the velocity gradients ∂zvx, ∂zvy

can be expressed with the components of n from (1) and substituted into (12)
[14, 9]. The procedure is straightforward, but expressions are complicated, so
the equations obtained can be solved only numerically.

A further simplification which can be made comes from the typical bound-
ary condition of strong anchoring which allows to expand the z dependence
of the director in terms of a full set of base functions, typically trigonometric
functions. Since elasticity in nematics inhibits the growth of reorientation with
a force proportional to k2

i (here ki is the inverse wavelength of the i-th mode),
high order modes will be strongly damped and thus a truncation to a finite
number of modes is possible. This way, spatial dependence with respect to z
is described by a few mode functions and their amplitudes. If additionally the
1D assumption is also used (i.e. the physical quantities depend only on z), this
procedure of expansion and projection of the equations onto the base functions
can be used to get rid of spatial dependence altogether. The system reduces
to a finite dimensional one, described by a set of complicated nonlinear ODEs
for the mode amplitudes. This is favorable, as investigating the solutions of
nonlinear ODEs is almost always much simpler, even if, in this case not nec-
essarily faster. On the other hand, taking too few modes can easily result in a
loss of physically important solutions. In any case, a correct choice of director
description (Cartesian components, various angles, e.g. spherical) is essential.
Choosing a representation that corresponds to the symmetries of the setup can
simplify the equations drastically.

It is important to note, that the inhibition of high order modes due to elas-
ticity always holds - even when it is not easy or practical to utilize. Thus
sometimes a numerical solution of the equations does not use such an expan-
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sion, but the results are projected onto a set of modes for analysis, as the time
behaviour of mode amplitudes is often more meaningful and telling than the
time behaviour of the director at any one point within the cell.

Equations for the light propagation

The most basic and unavoidable of problems when treating dynamical phe-
nomena induced by light in nematics is the solution of Maxwell’s equations for
some distorted director configuration. Phenomena in the nonlinear domain are
governed by an interplay between director reorientation - light torque change
due to modification of light propagation, so the success or failure of a theory of-
ten depends on the suitably chosen representation and/or approximations used
when dealing with this problem.

One simplification can almost always be applied: since director reorien-
tation changes very slowly on the spatial scale of the wavelength of light, the
electric field can be separated into fast phase exponentials and slow amplitudes
(similarly to many problems of light propagation in anisotropic media). If ad-
ditionally the 1D assumption can be applied, it is possible to write relatively
simple coupled ODEs for the slow field amplitudes (the amplitudes will depend
only on z - slow time dependence will result only through the time dependence
of the director). One possible way to obtain equations for slow amplitudes in
the 1D case is to use the so-called Berreman formalism [15]. The electric and
magnetic fields of the light should be written in the form:

Elight(r, t) =
1

2
(E(z, t)ei(kxx+kyy)e−iωt + c.c.), (13)

with the possible x − y dependence of the fields due to oblique incidence en-
tirely incorporated into the fast exponentials. From (9), or the wave equation
that can be obtained from it, it is straightforward to derive an equation for
the amplitudes E(z, t),H(z, t). A vector of four independent amplitudes de-
scribes the light field and a set of linear, first order, ordinary differential equa-
tions governs its evolution:

dΨ̄

dz
= ik0DΨ̄, (14)

where

Ψ̄ =









Ex

Hy

Ey

−Hx









(15)

The matrix D depends on the director components [3] and the other two field
components are defined by the above four unambiguously. By calculating the
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eigenvalues of D, one can separate the fast oscillations in z from the slow am-
plitudes. Another frequently used formalism is the separation of the electric
field into an ordinary and an extraordinary wave component [3]. This sep-
aration depends on space and time through the director components, but the
resulting equations are very useful (especially for the case of perpendicular
incidence), as the slow amplitudes change only due to twist distortions of the
nematic which is often small enough to allow a perturbative solution of the
equations.

If the equations of motion (1,7 or 11) are to be integrated by computer, the
equations for the slow field amplitudes can be solved numerically relatively
easily at each step of the integration. Sometimes it is also possible to obtain an
approximate expression for the fields as a function of the director components.
This is not very easy, however, and great care must be taken. While the ampli-
tudes of the electric field may change relatively slowly as the light traverses the
cell, phase differences between various components acquire importance much
faster. This means that integrals of the director components will appear in the
expressions and perturbation theory has a very limited validity.

3. Obliquely incident, linearly polarized light

One of the most interesting and investigated geometries is when a linearly
polarized light wave is incident at a slightly oblique angle on a cell of homeotrop-
ically aligned nematic. The direction of polarization is perpendicular to the
plane of incidence in this setup - so the system is symmetric with respect to
inversion over this plane [the x − z plane, see Fig. 2 (a)]. Very interesting
dynamical phenomena were observed in numerous experiments in this geom-
etry. First it was noted that persistent oscillations are possible above a certain
threshold intensity [16, 17]. Then various "competing" oscillatory states and

0 L

LC

(a)

(b)

x

z

y

n

ϕ
θE

α

Figure 2. Basic geometry of the setup. A linearly polarized light wave is incident upon a cell
of homeotropically aligned nematic at a slightly oblique angle α. The direction of polarization
is perpendicular to the plane of incidence (ordinary wave). The setup is symmetric with respect
to the inversion S : y → −y.
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stochastic oscillations were found [18] and it was noted that the system even-
tually exhibits chaotic behaviour [19]. Considerable effort went into exploring
the various regimes of regular and stochastic oscillations and trying to iden-
tify the transitions between them [20, 21]. Without a detailed theory however,
interpretation of experimental observations remained inadequate. Initial theo-
retical investigations performed the linear stability analysis of the homeotropic
state [16, 22]. These treatments used the 1D approximation, neglected flow,
and, employing a mode expansion, managed to derive a solvable set of linear
equations for small distortions around the homeotropic state. They showed that
the first instability of the homeotropic state is a pitchfork bifurcation for small
angles (the usual optical Freedericksz transition), but above a certain angle of
incidence αTB the primary instability becomes a Hopf bifurcation. However,
since the angles at which regular oscillations and stochastic behaviour were
observed were smaller than this critical angle, it was obvious that one must
go beyond the linear stability analysis and look for further bifurcations in the
nonlinear regime.

The next step was the derivation of a "simple" model to try describe these
complex phenomena [23]. The starting point was again the same as that used
previously for the linear stability analysis: a plane wave approximation for the
light, no flow included and the assumption that reorientation is small around
the homeotropic state, i.e. we are in the weakly nonlinear regime. The director
was described in terms of two angles as n = (sin θ, cos θ sinϕ, cos θ cosϕ)
[see Fig. 2 b)] and using the strong anchoring at the boundary these were ex-
panded as ϕ(z, t) =

∑

nAn(t)sin(nπz/L), θ(z, t) =
∑

nBn(t)sin(nπz/L).
The set of mode amplitudes (A1, .., B1, ...) were truncated, the resulting ex-
pression for the director substituted into the equations of motion and projected
onto these modes. The aim of this analysis was to derive a set of explicit
first order ODEs for the time evolution of the mode amplitudes. Clearly, for a
"minimal model" expected to be able to describe further bifurcations and pos-
sibly chaotic oscillations, one needs to keep at least three mode amplitudes,
and keep nonlinear terms up to at least third order. The difficult point of this
analysis was the solution of Maxwell’s equations analytically, with the mode
amplitudes as parameters, which was accomplished using perturbation theory
exploiting the fact that the reorientation angles are expected to be small. (Note
that this choice of angles is different from the one usually used, namely the
spherical angles. The reason is that with spherical angles only the polar co-
ordinate can be assumed to be small, the azimuthal one not - thus a power
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expansion is not possible.) The general form of the equations obtained is:

τȦi =
∑

j

LA
ijAj +

∑

j,k

PA
ijkAjBk

+
∑

j,k,l
k≤l

QA
ijklAjBkBl +

∑

j≤k≤l

RA
ijklAjAkAl,

τ Ḃi =
∑

j

LB
ijBj +

∑

j≤k

PB
ijkAjAk +

∑

j,k,l
k≤l

QB
ijklBjAkAl

+
∑

j≤k≤l

RB
ijklBjBkBl . (16)

The inversion symmetry with respect to the x− z plane implies that the equa-
tions must be invariant under the transformation S : {Ai, Bi} → {−Ai, Bi},
so that only odd powers of the Ai-s can appear in the first set of equations and
only even powers in the second set. In a linear approximation, only the A-s
have to be taken into account, as they are the ones driven by the light directly.
Thus for a minimal model the three modes: A1, A2, B1 have been kept. The
resulting set of ODEs has been solved numerically, and the nature of the so-
lutions analyzed as a function of the two control parameters of the problem,
the angle of incidence α and the intensity of the light normalized by the OFT
threshold ρ.

The numerical solution of the equations gave exciting results. In the region
where the primary instability of the homeotropic state is a stationary instabil-
ity, two new stationary states are born, which are mutual images under the
symmetry transformation S. These then lose stability at some critical intensity
in a Hopf bifurcation, where two limit cycles are born (again, mutual images
under S). They are depicted on Fig. 3 a) where they are plotted in the phase
space spanned by the three amplitudes {A1, A2, B1}. This is very reassuring,
since it accounts for the regular oscillating regime observed in the experiments
for angles smaller than αTB . As the intensity is increased, the symmetric limit
cycles pass closer and closer to the origin (which, above the OFT threshold is
saddle) and at a certain intensity ρ1 they become homoclinic trajectories to the
origin (i.e. the homogeneous homeotropic state) [Fig. 3 b)]. Above ρ1 the two
limit cycles merge into one double-length limit cycle that is symmetric with
respect to S, [Fig. 3 c)]. This bifurcation is called a homoclinic gluing, or a
gluing bifurcation. A further increase in the light intensity then brings about
another symmetry-breaking bifurcation, where the symmetric limit cycle gives
way to two new asymmetric limit cycles, mutual images under S [Fig. 3 d)].
At a still higher intensity these too become homoclinic to the origin [Fig. 3 e)]
and merge into a quadruple-length symmetric limit cycle [Fig. 3 f)]. This se-
quence of splitting and re-merging of limit cycles continues ad infinitum, and
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Figure 3. Limit cycles in phase space at various intensities as obtained from the simple model
and α = 7◦. a) ρ = 1.78 b) ρ = 1.80875, c) ρ = 1.85, d) ρ = 1.94, e) ρ = 1.9474 f) ρ = 1.96.

the bifurcation thresholds ρi converge to certain value ρ∞. Beyond this point
the motion is chaotic, the system moves along a strange attractor in phase space
[Fig. 4]. The system exhibits typical signatures of low-dimensional determinis-
tic chaos such as great sensitivity to initial conditions and a positive Lyapunov
exponent. The frequency spectrum of the mode amplitudes also shows this
transition to chaos by changing from a line spectrum (where all lines are in-
teger multiples of the same fundamental frequency) to a continuous spectrum.
We would like to emphasize: while this route to chaos involves the birth of
double-length limit cycles at a sequence of points, it is very different from the
usual period doubling scheme as the stable homoclinic limit cycle at the bifur-
cation has an infinite period. This quite distinct route to chaos was analyzed in



Dynamical phenomena in nematic liquid crystals induced by light 13

a series of papers [24, 25], but to our knowledge has never been observed in an
experiment before.
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Figure 4. Strange attractor in phase space at α = 7◦ and ρ = 2.18.

Apart from this peculiar route to chaos, there was a great variety of inter-
esting nonlinear behaviour found in this simple model in various domains of
the parameter plane spanned by the angle of incidence α and the intensity of
light ρ [23]. The most important result of the model is, however that the first
region of regular oscillation - stochastic oscillation - regular oscillation which
was found in various experiments [19, 21] could be interpreted in terms of the
system passing through the first gluing bifurcation. As the system is in the
immediate vicinity of this bifurcation and orbits are close to being homoclinic
trajectories to the origin, there are random transitions between orbits (or differ-
ent parts of the same orbit) due to noise in the experiment. Thus two "compet-
ing" modes of oscillations exist with random transitions between them. Some
distance below and above the bifurcation, the limit cycles do not approach the
vicinity of the origin and there are no random jumps. Therefore the evolution
of the system seems regular above and below the bifurcation, but is found to
be stochastic in the immediate vicinity. This interpretation is made even more
convincing by a reconstruction of the limit cycles from experimental data [26],
which shows clearly that the symmetry properties of the trajectories above and
below the bifurcation change precisely as expected. However, for higher inten-
sities the agreement between the predictions of the model and the observations
was not good. Experiments revealed what looked like another gluing bifurca-
tion (whose nature was different from the one expected for the second gluing
in the model) another periodic regime, then an abrupt transition to chaotic be-
haviour. This was found at intensities much higher than the intensities where
chaos exists in the model.
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Thus, while the simple model was successful in identifying the first two
bifurcations above the primary one, experimental results did not confirm the
existence of the full cascade of gluing bifurcations leading to chaos. To gain
further insight into dynamical phenomena, a numerical study of the equations
was performed [27]. This study retained the assumption that light can be de-
scribed by a plane wave and it also neglected flow. The assumption that reori-
entation is small was relaxed. Using a finite differences algorithm the equations
were first solved, and mode amplitudes characterizing the motion of the system
in phase space were extracted from the solution. The result of this treatment
was somewhat surprising. The first three bifurcations the system goes through
(Freedericksz transition, secondary Hopf and first gluing) was the same as in
the simple model. (Although there was a considerable difference in the bifur-
cation threshold for the gluing bifurcation.) For higher intensities however, the
cascade of gluing bifurcations was not found. Furthermore, the observed dy-
namical scenarios were different from that observed experimentally and chaos
was not found in the simulations for the parameters the experiments were per-
formed with. This made it clear that although higher order nonlinearities that
were neglected in the simple model do play a major role in the dynamics of the
system, further assumptions must be discarded for a correct description of the
phenomena.

Clearly, the next step in refining theoretical description of these phenomena
had to be the relaxation of one of the major assumptions and either include
flow in the equations, or discard the plane wave approximation and consider
narrow beams. Since other experimental works that investigated dynamical
phenomena induced by narrow laser beams indicated that the beam width be-
comes an important parameter only when it is about two times smaller than
the cell width [13], the choice was to include flow and treat light as a plane
wave. Thus another numerical study of the system was performed, along sim-
ilar lines as the previous one. This time the full nematodynamical equations
including flow were solved [10]. The results of this calculation were much
more satisfying. The first three bifurcations (primary, secondary Hopf and first
gluing) occurred in the same way as in the simple model and the first simu-
lation. There were only quantitative differences of the bifurcation thresholds
(Fig. 5 shows the lines of the most important bifurcations on the ρ− α plane.
The lines of the primary Hopf bifurcation and the first gluing bifurcation are
shown as calculated from both simulations, so that the difference between the
bifurcation thresholds caused by the inclusion of flow can be seen.) As the
intensity is increased, the bifurcation scenario is qualitatively different for the
calculation with flow. There is a second gluing bifurcation as observed in the
experiments, but its nature is different from that suggested by the model. It
is actually the inverse of the first one - the symmetric limit cycle breaks up
into two small asymmetric limit cycles like those depicted on Fig. 3 a). After
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Figure 5. Bifurcation diagram on the plane of the two control parameters ρ and α. The solid
lines 1 and 2 mark the primary instability, where the homogeneous homeotropic orientation
becomes unstable. At 1 the bifurcation is a stationary (pitchfork) bifurcation, at 2 a Hopf one.
The two lines connect in the Takens-Bogdanov (TB) point. The solid lines 3 and 4 mark the first
gluing bifurcation and the second gluing bifurcation respectively. The dashed lines 2b and 3b
mark the lines of the primary Hopf bifurcation and the first gluing bifurcation when calculated
without the inclusion of flow in the equations.

this second gluing, a strange attractor appears abruptly as the intensity is in-
creased. This sequence now agrees with the dynamical scenarios observed in
the experiments, so it appears that the calculation that includes flow is capable
of interpreting experimental observations at all intensities. It also proves that
flow plays a major part in the dynamics when the light intensity is high enough,
so it is imperative to take flow into account if observations are to be interpreted
correctly. This supports the assumption that finite beam size effects can be
neglected even though these experiments too were performed with w0/L ≈ 1.

Another exciting result of the calculation with flow was, that the route to
chaos via a cascade of gluing bifurcations was actually located in the param-
eter plane, close to the Takens-Bogdanov point. Since bifurcation lines are
nearly parallel to the ρ axis in this region, they can be traversed by keeping
the intensity fixed and decreasing the angle of incidence. The scenario can be
found in a region which was not explored by experiments, so the existence of
this very peculiar route remains to be confirmed by a further experiment.
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4. Perpendicularly incident, circularly polarized light

Another intriguing geometry to which much attention was attracted during
the last two decades is when a circularly polarized beam is incident perpen-
dicularly on a layer of nematic that has initially homeotropic alignment. The
light is polarized in the plane of the layer (the x-y plane) and propagates along
the positive z axis (see Fig. 6). In this case the optical Freedericksz transi-
tion is observed to be weakly hysteretic, and above threshold the molecules
undergo a collective rotation [28] (that corresponds to a uniform precession
of the director). This effect is well understood in the frame of a purely clas-
sical (hydrodynamic) approach [28]. The fact that the director rotates above
the transition rather than settling to some stationary or oscillating state can be
explained by symmetry. Contrary to the geometry discussed in the previous
section, the present one possesses isotropic symmetry in the plane of the layer.
Thus the only states allowed are rotating ones (the peculiar case of stationary
distortion can be regarded as a rotation whose frequency becomes zero). An-
other explanation in terms of ordinary (o) and extraordinary (e) waves is also
possible. When the director has homeotropic alignment, the phase speeds of
e and o waves are the same, so the phase difference α(z) between e and o
waves remains π/2. Thus light polarization is unchanged and remains circu-
lar when it propagates through the nematic layer. When the director reorients,
α(z) changes because the phase speed of the e-wave travelling across the layer
depends on z. Thus the polarization becomes elliptic inside the layer. The
light-torque acting on the director tries to turn it towards the major axis of
polarization, leading to precession.

The subcritical nature of the Freedericksz transition can be explained as
follows. When the director settles to the precession state, light becomes ellip-
tically polarized inside the nematic. On the other hand, it is known that the
Freedericksz transition for elliptically polarized light depends on ellipticity,

z

x

y 
0 L

E0

LC

n0 Φ
Θ n0

n

Figure 6. Geometry of the setup: circularly polarized light incident perpendicularly on a
nematic layer with the director n0 ‖ z (homeotropic state). The components of the director n

are described in terms of the angles Θ, Φ (Θ = 0 in the homeotropic state).
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and occurs at some intensity between the Freedericksz threshold for linearly
polarized light and the one for circularly polarized light (see the next section).
(The threshold for OFT for circularly polarized light is two times higher than
that for a linearly polarized one.) Thus, once reorientation takes place, the
elliptically polarized light that develops inside the nematic can sustain the dis-
tortion even if the intensity is decreased slightly below the initial threshold.

The precession of the molecules can also be interpreted in a quantum picture
as spin angular momentum transfer from the light to the medium and is called
self-induced stimulated light scattering [29]. Since collective molecular rota-
tion dissipates energy, the light beam has to transmit part of its energy to the
medium. As the pure nematic LC is a transparent medium (no absorption) this
energy loss leads to a red shift of a part of the light beam [29]. The mechanism
can be described as follows: each scattered photon has its helicity reversed and
thus transfers an angular momentum of 2~ (that is perpendicular to the layer) to
the medium. Moreover its energy is lowered by an amount ~∆ω. Thus p pho-
tons per unit time produce a constant torque τz = 2~p, acting on the medium,
which induces a collective molecular precession. This torque is balanced by
the viscous torque. The angular velocity of the uniform precession Ω is related
to the red shift ∆ω by the simple formula ∆ω = 2Ω. This formula can be de-
rived from energy conservation using that i) p photons loose per unit time the
amount of energy ~∆ωp ; ii) the work made by the torque τz on the director is
τzΩ = 2~pΩ = ~∆ωp . The fact that in the final relation ~ disappears, shows
that one can obtain this formula through a classical approach [30].

In general the angular momentum of the light beam consists of two parts: a
spin part associated with polarization [31] and an orbital part associated with
spatial distribution [32]. However, if the spatial distribution in the plane of the
layer is supposed to be homogeneous i. e. when one deals with a plane wave
approximation, then the orbital part is zero. In this context it may be interesting
to note that laser light with a Laguerre-Gaussian amplitude distribution can be
shown to have a well-defined orbital angular momentum [33].

The theoretical description of the OFT in this geometry was reported in [34]
where the importance of twist deformations of the director was pointed out and
the hysteretic nature of the OFT was explained. In [30] a theoretical and exper-
imental investigation of the dynamical behavior of the system for the region of
higher intensities was reported. The authors of [30] observed a further discon-
tinuous transition with large hysteresis from a precession regime with small
reorientation amplitude occurring above the OFT to one with large reorienta-
tion. The frequency of the large amplitude precession was found to be much
smaller than the one just above the OFT and to exhibit rapid variations with the
incident intensity reaching zero at roughly periodic intervals. In this work the
authors presented an approximate model that can describe qualitatively both
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regimes of uniform director precession and also presented clear experimental
evidence of the frequency reduction in the second regime.

Again, one of the simplifications used in this model was the infinite plane
wave approximation. Under this assumption, all relevant functions depend
solely on the spatial coordinate z and the time t. Obviously, the representation
adapted to this geometry is the one given in usual spherical angles Θ(z, t) and
Φ(z, t) such that n = (sinΘ cos Φ, sinΘ sinΦ, cos Θ) [see Fig. 6]. The twist
angle is written then as Φ = Φ0(t)+Φd(z, t), where Φ0(t) does not depend on
z and describes a rigid rotation of the director around the z axis (no distortion)
while Φd(z, t) contains twist distortion. Such a decomposition is not unique in
the sense that any constant can be added to Φ0 and then subtracted from Φd.
The key point, however, is that Φ0 depends on time only and can be unbounded
while Φd is required to remain bounded. (Note that nonzero Φd means that the
instantaneous director profile is out of plane.) To construct a simple model,
some further simplifying hypotheses are needed [30], namely i) the backflow
is neglected; ii) the splay-bend distortion are small, i.e., Θ2(z, t) � 1; iii) a
sine trial function for Θ(z, t) is used; iv) the twist distortions are small, i.e.,
|∂zΦd| � 1/L; v) the slow-envelope approximation for Maxwell’s equations
can be used. Retaining terms up to third order in Θ and keeping the lowest
order terms in ∂zΦd, the following expressions for the frequency of the uniform
director precession 2πf0 = dΦ0(t)/dt and the twist gradient ∂zΦd have been
obtained:

f0 =
ρ (1 − cos ∆)

2π∆
, ∂zΦd =

πρ

2∆

(1 − cos ∆)v(z) − 1 + cos[∆v(z)]

sin2 z
, (17)

where time and length are normalized as t→ t/τ and z → πz/L, respectively.
Here ρ is the normalized intensity such that ρ = 1 corresponds to the threshold
for OFT and v(z) = (z − sin z cos z)/π. ∆ is the phase delay induced by
the whole layer and is a global measure of the amplitude of reorientation. It
has a direct experimental interpretation, since the quantity ∆/2π represents
roughly the number of self diffraction rings in the far field [35] and, under
the approximation used, is proportional (with a large prefactor) to the square
of the amplitude of the polar angle Θ2

1(t). Finally, an analytic solution for
∆(ρ) has been found [30] which is given by a rather cumbersome formula. As
is seen from Eq. (17) f0 indeed becomes smaller and exhibits rapid variation
with increasing ∆ (i.e. with increase of the reorientation).

Even though the approximate model gave a satisfactory description of the
observed phenomena, the nature of the transition from one regime to the other
was not understood in this framework. Some years later, a qualitative mecha-
nism based on non-uniform spin angular momentum deposition from the light
to the nematic was introduced to explain the origin of such a transition [36].
A particular interest to this problem arose again more recently, when an addi-
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tional continuous secondary instability between the OFT and the abrupt transi-
tion to the largely reoriented state was observed [37]. Although a preliminary
description of the bifurcation scenario was reported in [38] the global scenario
was still obscure. It became clear that a numerical study is needed to gain better
insight to the problem [39, 40]. The original problem consisting of two PDEs
for Θ and Φ was simplified by means of expansions of Θ and Φd with respect
to z in systems of orthogonal functions which satisfy the boundary conditions:
Θ =

∑∞
n=1 Θn(t) sinnz , Φd =

∑∞
n=1 Φn(t) sin(n+1)z/ sin z. After substi-

tuting these expansions into the director equations with further projecting the
equation for Θ onto the modes Θn and one for Φ onto Φn (Galerkin method),
a set of coupled nonlinear ODEs for the modes Θn and Φn has been derived.
To solve this set which contains the field amplitudes, the two ODEs for the
field amplitudes have to be integrated dynamically at each step of numerical
integration for time t [40]. The infinite set of ODEs was reduced to a finite
one by truncating the mode expansion for Θ and Φd. It is worth noting that
for a state of uniform director precession (UP) [f0 = const] the set of ODEs
reduces to one of nonlinear algebraic equations for Φn and Θn which become
constant in time. The results of this numerical study which explains the entire
scenario is discussed in what follows.

In Fig. 7, the phase delay ∆/2π is plotted versus the normalized intensity
ρ. The solid lines represent stable uniform precession (UP) states, while the
dashed lines correspond to precession states that are unstable. The region in
gray corresponds to a nonuniform precession (NUP) where nutation (d∆/dt 6=
0) is coupled to precession. In this regime, the lower and the upper lines that
limit the region correspond to the minimum and maximum values taken by ∆
during its oscillation.

The OFT occurs at ρ = 1 via a subcritical Hopf-type bifurcation where
the system settles to a uniform precession state with a small reorientation am-
plitude (∆ ∼ π so that Θ2 � 1) labeled UP1. Decreasing the intensity
from the UP1 regime, the system switches back to the unperturbed state at
ρ = ρ∗1 ' 0.88 where a saddle-node bifurcation occurs. The trajectory in the
(nx, ny) plane is a circle whereas in a coordinate system that rotates with fre-
quency f0 around the z axis it is a fixed point. The time Fourier spectra of the
director n have one fundamental frequency f0, whereas Θn, Φn and ∆ do not
depend on time.

It is worth noting here that from the weakly nonlinear analysis it follows
[40] that the nature of the OFT is governed by the sign of the coefficient C =
K1/K3−(9/4) (εa/ε||). C < 0 corresponds to a subcritical OFT while C > 0
corresponds to a supercritical OFT. Incidentally, this criterion is identical to
the one derived in the case of OFT under linearly polarized light [41]. In
present example, C = 0.154 and the OFT is actually supercritical. However,
the solution branch turns over and becomes subcritical (and unstable) already
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Figure 7. (a) ∆/2π on a log scale versus ρ for ρ < 2 and ∆ < 50π. (b) ∆/2π on a linear
scale versus ρ for ρ < 4 and ∆ < 3π. Solid (dashed) curves correspond to stable (unstable)
solutions.

at ρ = 1 + δρ where δρ ' 10−6. This explains why the OFT appears to be
subcritical on the scale used in Fig. 7. In fact, although δρ increases when the
cell thickness is decreased, even at L = 10 µm, the subcritical region is still
too small to detect (δρ ' 10−4).

With further increase of the intensity, the UP1 state looses stability via a
supercritical Hopf bifurcation at ρ = ρ2 where the director starts to nutate
(NUP regime). For the NUP state all modes Θn and Φn with n ≥ 1 are time
dependent and their Fourier spectrum contains frequencies mf1, where m is
an integer. The spectra of the phase delay ∆, director n have contributions at
frequencies given by the simple formulas: ∆̃ = {mf1} , ñ = {f0,mf1 ± f0}.
In some narrow region around ρ3 ≈ 1.75 the period T = 1/f1 of the NUP
increases progressively with increasing light intensity, and indeed appears to
diverge logarithmically at ρ3, as is shown in Fig. 8. Thus as ρ approaches ρ3,
the NUP limit cycle collides with the unstable UPS branch which is a saddle.
In fact we deal here with a homoclinic bifurcation of the simplest type where
a limit cycle collides with a saddle point having only one unstable direction
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Figure 8. Characterization of the homoclinic bifurcation f−1

1
(ρ) = O[ln(ρ3 − ρ)] near ρ3

(ρ3 = 1.748542389055). The solid line is the best fit to the theoretically calculated values (•).

[42] (all the eigenvalues have negative real parts except one, which is real and
positive).

At ρ = ρ3 the system jumps to a new state of uniform precession of the di-
rector (UP2) with large reorientation (Θ ' 74o) and slow precession rate. As
displayed in Fig. 7, starting from the stable UP2 branch above ρ3 and lowering
the excitation intensity, one finds a large and rather complicated hysteretic cy-
cle, which eventually flips back to the UP1 solution at ρ∗3 = 1.09. This part of
the UP2 branch consists of alternatively stable and unstable regions exhibiting
a series of saddle-node bifurcations. Eventually this branch connects with the
UPS one which makes a loop and connects with the UP1 branch.

As a result of the appearance of the new frequency f1 at ρ = ρ2, the director
motion becomes quasi-periodic characterized by the two frequencies f0 and f1.
This is illustrated in Fig. 9(a) where the trajectory of the director in the (nx, ny)
plane is plotted for ρ = 1.55 at some z inside the layer. This trajectory is not
closed in the laboratory frame indicating quasi-periodicity of the director. In
fact, the two independent motions, namely the precession (f0) and the nutation
(f1) can be isolated by transforming to a frame that rotates with frequency f0.
In the rotating frame, the director performs a simple periodic motion with fre-
quency f1 as is seen in Fig. 9(b) with the arrow indicating the sense of rotation
for the case where the incident light is left circularly polarized. (The sense
of rotation is always opposite to that of the underlying precession [43].) As
is seen from Fig. 9(c,d) starting from initial conditions near the unstable UP1
solution or the UPS one, the director eventually settles on the NUP solution,
which is represented by a simple limit cycle.
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Figure 9. (a),(b): director trajectory at ρ = 1.55. (a) Quasiperiodic behavior in the laboratory
frame (nx, ny). (b) Periodic limit cycle in the rotating frame (nrot

x , nrot
y ). The arrow indicates

the sense of rotation when the incident light is left circularly polarized.
(c),(d): director trajectory at ρ = 1.55 in the f0(ρ,NUP)-rotating frame showing the instability
of the UP1 and UPS solutions in the NUP regime. (c) Initial condition near the UP1 solution.
(d) Initial condition near the UPS solution. The arrows indicate the sense of rotation of the
corresponding trajectory when the incident light is left circularly polarized.

In fact, the unstable UPS branch represents the saddle point (or separatrix)
that separates the regions of attraction of the NUP state (or, below ρ2, the UP1
state) from that of the largely-reoriented UP2 state. At this point it might also
be interesting to note that the UP1 state represents a stable node at ρ ∼ ρ1 (the
relevant stability exponents are real and negative). Then, between ρ1 and ρ2 it
changes to a focus (the stability exponents become complex). At ρ2 the real
part of the complex pair of stability exponents passes through zero and then
becomes positive.
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Figure 10. Calculated dynamics just below ρ = ρ3. (a) Phase shift ∆(t). (b) Instantaneous
angular velocity Ω(t) = dΦ0/dt.

As ρ approaches the homoclinic bifurcation point, the trajectory of the di-
rector approaches the unstable UPS orbit for longer and longer intervals. The
dynamics near ρ3 possesses two time scales, a slow and a fast one, as ex-
pected from the homoclinic nature of the transition. Figure 10 emphasizes
this point where the phase shift ∆(t) and the instantaneous angular velocity
Ω(t) = dΦ0/dt are plotted versus time.

The bifurcation scenario discussed above was actually observed in the ex-
periment. Although a good qualitative agreement between theory and exper-
iment was found [40] there are quantitative discrepancies. In the experiment
the measured onset of the nutation-precession motion turns out to be about
20% lower than predicted by theory. Moreover the slope of the precession
frequency versus intensity predicted by theory turned out to be different from
that observed in the experiment. One of the two possible reasons could be the
use of finite beam size in the experiment (that is typically of the order of the
thickness of the layer) whereas in theory the plane wave approximation was
assumed. Actually, the ratio δ between diameter of the beam and the width
of the layer is another bifurcation parameter (in the plane wave approximation
δ → ∞) and was shown to play crucial role on the orientational dynamics [13].
There and in [44] the importance of the so called walk-off effect was pointed
out which consists of spatial separation of Pointing vectors of the ordinary and
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extraordinary waves. (Ideally this effect disappears when the propagation takes
place along the principal axis, i.e. the director n.) The problem in this case has
to include lateral degrees of freedom and becomes much more complicated.
An appropriate theoretical description is still missing. The other reason could
be neglection of the fluid velocity in the LC. In [9] the influence of backflow
on the director dynamics was examined. After adiabatic elimination of the
flow field, a linear stability analysis around the basic state has been performed
in order to assess the "linearized viscosity reduction factor". As expected the
threshold for the OFT is unchanged whereas the growth rate σ = (ρ− 1)/(τξ)
acquires an additional factor ξ < 1 (ξ = 1 corresponds to neglection of back-
flow). Thus, within the linear approximation, backflow results in a renormal-
ization of the rotational viscosity γ1 (in fact a reduction). The same expression
for the reduction factor ξ was found in [8] where a one-mode approximation
for the director components and smallness of the twist distortion were used.

As was demonstrated in [9] backflow does not lead to qualitative changes
in the dynamical scenario, but does lead to substantial quantitative changes in
the secondary bifurcation threshold. It turns out that the regime of nonuni-
form precession shifts to higher light intensities by about 20% and exists in
a larger interval. In Fig. 11, ∆/2π is plotted versus the normalized intensity
ρ. The phase delay ∆ for the UP regimes is only slightly different from the
case without backflow. However, the regime of nonuniform director preces-
sion shifts to higher intensities. As is seen from Fig. 11 the thresholds for the
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Figure 11. ∆/2π versus ρ in semi-logarithmic scale. Solid (dashed) curves correspond to
stable (unstable) UP solutions. Gray region: nonuniform precession states of the director. Dash-
dotted lines in the (ρ′

2, ρ
′

3) interval: nonuniform precession states of the director when backflow
is neglected. The fact that ρ′

3 ' ρ2 is accidental.
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NUP and for the UP2 regimes turns out to be ρ2 = 1.75 and ρ3 = 2.4 in-
stead of ρ′2 = 1.45 and ρ′3 = 1.75 when the backflow is neglected [39, 40].
In [9] was also shown that the precession frequency f0 for UP1 states actually
increases when the backflow is included (as expected because γ1 effectively
decreases). An unanticipated spatial oscillation of the backflow in the UP2
regime were also found which results from spatial oscillations of the director
twist ∂zΦ. They are a consequence of oscillations in the torque resulting from
interference phenomena between ordinary and extraordinary light. The back-
flow behaves very differently for the three types of the director motion and,
thus, can act as a sensitive diagnostic to distinguish them.

Thus, the inclusion of backflow made the situation even worse because the
experimental values of the thresholds ρ2, ρ3 are even smaller than that given
by the theory without backflow [39, 40]. One is forced to conclude that the
discrepancy between the theoretical predictions and the experiment is strongly
affected by the fact that in the experiments the beam size was not large com-
pared to the layer thickness. By using a large aspect-ratio geometry one is now
in a position to test the theoretical framework [9] quantitatively. This can be
done by use of a dye-doped nematic because the values of OFT in this case
can be two orders of magnitude smaller than for a pure nematic (see [45, 46]
and references therein). The fact that the threshold intensity is low allows the
spot size of the light to be much larger than the thickness of the layer, thus the
plane wave approximation assumed in the theory might be better achieved in
the experiment.

5. Perpendicularly incident, elliptically polarized light

A natural generalization of the previous geometry is an elliptically polar-
ized (EP) plane wave incident perpendicularly on a layer of nematic that has
initially homeotropic alignment (see Fig. 6 in the previous chapter). The ellip-
ticity −π/4 ≤ χ ≤ π/4 is related to the ratio between the minor and the major
axis of the polarization ellipse. The case χ = 0 [χ = ±π/4] corresponds to a
linearly [circularly] polarized light. The sign of χ determines the handedness
of the polarization, thus it is sufficient to choose χ > 0 only. The main differ-
ence with the CP light discussed in the previous section is the broken rotational
invariance around the z-axis.

As was shown in [47] the director is unperturbed (U) until the intensity
reaches a critical value that depends on χ: IEP

F = ICP
F /(1 + cos 2χ), where

ICP
F is the intensity for OFT of CP light. Thus we have two control parameters,

the ellipticity χ and the incident intensity I . In what follows the normalized
intensity ρ = I/ICP

F is used.
For χ < π/4 the OFT is a pitchfork bifurcation and the reoriented state

is a stationary distorted state (D) state. In [48], the oscillating states (O)
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were experimentally observed. The numerical analysis [48] of the basic equa-
tions indeed predicts the existence of such a state. It should be noted that
reflection symmetry is spontaneously broken by the first bifurcation, so in
the D and O states one has two symmetry degenerate solutions related by
{nx → −nx, ny → −ny}. In [49] a model was derived using the assump-
tion of small director distortion, i.e. both the polar angle and the twist were
assumed to be small (Θ2 � 1 and Φd � 1). The director and the field equa-
tions were expanded then with respect to these angles and only some signif-
icant nonlinear terms were kept. Then a mode expansion for Θ and Φ was
used (the same as for CP light, see previous section) and only the first mode
Θ1 for the polar angle was retained. Within this approximation the phase de-
lay ∆ ∼ Θ2

1. The equations for the Stokes vector (which determine the field
amplitudes) were solved iteratively using Φd as a small parameter (actually
the first iteration was taken). This allowed elimination of the field amplitudes
from the director equations, which was finally reduced to a set of two ODEs
for the phase delay ∆ and the zeroth mode Φ0 (which represents a rigid rota-
tion). The twist modes Φn≥1 were then assumed to follow adiabatically their
steady state values and were shown to decrease rapidly with n, so only a few
of them were kept. This relatively simple model was capable of predicting not
only O states but also some other states occurring at higher intensities. It was
demonstrated that with the increasing of ρ the transition from D to O state takes
place via Hopf bifurcation, while the transition from oscillation to rotation was
shown to be the gluing of two symmetrical limit cycles (for a certain region of
χ < π/4). The hysteresis between rotations and oscillations at large ellipticity
χ was also predicted. It should be noted that the experimental findings [49] are
qualitatively reproduced by this model.

It was shown in the previous chapter that CP light induces quasiperiodic
director rotation (QPR) if the incident intensity exceeds the one for OFT by
about 40% (no backflow). This is already in a higher region of intensities than
that considered in [49]. So the question was what happens if one mismatches
slightly from the CP case at higher intensities? It became clear [50] that a full
numerical analysis is needed to capture the QPR for the elliptic case because
i) the small distortion approximation failed to describe QPR for CP case; ii)
higher order nonlinearities in twist terms [∝ (∂zΦd)

2] are important. In [50]
the QPR was found both theoretically and experimentally. Apart from this
regime, other regimes of rotating, oscillating or stationary states with large di-
rector distortion and the transitions between them were predicted theoretically
[50]. In what follows we present a brief overview of the bifurcation scenario
following [50], which is in our opinion complete for large and moderate values
of ellipticity.

Figure 12 taken from [50] presents the different regimes that exist in the
(χ, ρ) plane for 0.33 ≤ χ ≤ π/4 ' 0.785. Above the OFT threshold, several
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Figure 12. Phase diagram of the dynamical regimes in the parameter plane (χ, ρ). U: Undis-
torted state; D: stationary Distorted states; O: periodic Oscillating states; PR: Periodic Rotating
states; QPR: Quasi-Periodic Rotating states; LD and LO: Large reorientation associated respec-
tively with stationary Distorted and Oscillating states. The dashed lines hPR, hLD and hLO

correspond to the hysteretic region of the PR, LD and LO states, respectively. The points are
experimental data extracted from [49] for D (�), O (◦), PR (N) and hysteretic PR (O).

regimes can exist depending on the values of χ and ρ: stationary distorted
(D), oscillating (O), periodic rotating (PR), quasi-periodic rotating (QPR) and
largely reoriented states (Θ ∼ 1), which may be stationary distorted (LD),
oscillating (LO) or rotating (LR) states (LR states are not shown on Fig. 12
since they only arise in a narrow region ∆χ ∼ 10−2 near χ = π/4). Keeping
the ellipticity fixed and increasing the intensity, these regimes appear as a well-
defined sequence of transitions as is summarized in Table I. The trajectories of
the director in various regimes are shown in Fig. 13.

For 0.33 < χ < 0.53, the OFT is a pitchfork bifurcation and the reori-
ented state is a D state [see the filled circles in Fig. 13(a)]. This state loses
its stability through a supercritical Hopf bifurcation to an O state [curve 1 in
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Figure 13. Calculated director trajectories in the (nx, ny) plane. (a) χ = 0.4: stationary
distorted state (D) at ρ = 0.72 (•); periodic oscillating state (O) at ρ = 0.76 (curve 1); periodic
rotating state (PR) just above the gluing bifurcation at ρ = 0.83 (curve 2) and slightly below
the transition to the largely reoriented oscillating state (LO) at ρ = 0.97 (curve 3); largely
reoriented oscillating state at ρ = 0.98 (curve 4, see inset). (b) χ = 0.6: stationary distorted
state (D) at ρ = 0.8 (•); periodic oscillating state (O) at ρ = 0.91 (curve 1); periodic rotating
state PR1 slightly above the gluing bifurcation at ρ = 0.917 (curve 2); periodic rotating state
PR2 at ρ = 0.95 (curve 3). (c) χ = 0.74: stationary distorted state (D) at ρ = 0.99 (•);
periodic oscillating state (O) at ρ = 0.9925 (curve 1); periodic rotating state PR1 slightly
above the gluing bifurcation at ρ = 0.9932 (curve 2); periodic rotating state PR2 slightly
above the saddle-node bifurcation at ρ = 0.9936 (curve 3, dashed line); quasi-periodic rotating
state at ρ = 1.5 (curve 4).

Fig. 13(a)] characterized by a single frequency f0 (Table II). As was men-
tioned above the reflection symmetry is spontaneously broken by the primary
bifurcation, so in the D and O states one has two symmetry degenerate solu-
tions. As ρ increases, these two limit cycles merge in a gluing bifurcation at
the origin and restore the reflection symmetry. This leads to the appearance of
a single double-length limit cycle that corresponds to the trajectory in the PR
state [curve 2 in Fig. 13(a)]. A further increase of the intensity eventually leads
to a discontinuous transition to a largely reoriented oscillating (χ < 0.45) or
stationary distorted (χ > 0.45) state. In both cases this transition is associ-
ated with a small relative jump of the director amplitude and corresponds to
a homoclinic bifurcation. In fact, stable LO states exist until the intensity is
decreased to a critical value represented by the hysteretic line hLO in Fig. 12,
below which the LO state becomes stationary distorted. This LD state finally
vanishes when the intensity is decreased below the hysteretic line hLD.

For 0.53 < χ < 0.72, one has the sequence U → D → O → PR as before
[see Fig. 13(b)], however there is an additional bifurcation between PR states.
In fact, the limit cycle amplitude of the PR regime, now labeled PR1 [curve
2 in Fig. 13(b)], abruptly increases. This results in another periodic rotating
regime labeled PR2 with higher reorientation amplitude [curve 3 in Fig. 13(b)].
This is a hysteric transition connected to a double saddle-node structure with
the (unstable) saddle separating the PR1 and PR2 branches, as already found
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within the approximate model [49]. In that case, the system switches back to
the O or D state at the line labeled hPR in Fig. 12. In contrast, no hysteresis
is observed when ρ is decreased starting from the PR1 regime since the O
→ PR1 transition is continuous. The PR1 → PR2 transition is not shown in
Fig. 12 because it is very near to the gluing bifurcation. At χ = 0.53 the two
saddle nodes coalesce. Finally, for high intensity the system switches abruptly
from the PR2 to the LD regime. The reorientation discontinuity associated
with this transition is small for χ < 0.66 and quite large for χ > 0.66. This
due to the fact that, for χ < 0.66, part of the limit cycle, associated with the
PR state just below the transition, extends to large reorientations in the (nx, ny)
plane. Consequently, it is already close to the largely reoriented states nearby
[see e.g. curve 3 and 4 in Fig. 13(a)]. The transition to large reorientation
is found to be a homoclinic bifurcation and when the intensity is decreased,
stable LD states exist until the line hLD is reached.

For 0.72 < χ < π/4 the sequence U → D → O → PR1 → PR2 is ob-
served as before [see Fig. 13(c)]. However, for higher values of ρ a QPR
regime is born through a secondary supercritical Hopf bifurcation, which in-
troduces a new frequency f1 into the system and transforms the dynamics into
a quasi-periodic behavior [curve 4 in Fig. 13(c)]. As the intensity increases the
QPR state undergoes a homoclinic transition to a largely reoriented LD or LR
regime, which are respectively represented by a stationary distorted or slowly
rotating (close to χ = π/4) state. This bifurcation is associated with a large
discontinuity of the reorientation amplitude.

The signature of the anisotropy of incident light is visible in the director
trajectories in the (nx, ny) plane. The PR trajectories are obviously non circu-
larly symmetric for χ = 0.4 and χ = 0.6 [see Figs. 13(a,b)] whereas PR2 and
QPR regimes are almost circularly symmetric when the polarization is almost
CP [see Fig. 13(c)]. The spectral content of the variables nx,y, ∆ and Ix,y for
O, PR and QPR is listed in Table II.

Finally, one should mention the particular situation when the PR regime
vanishes at χ = 0.33 (see Fig. 12). There, a direct transition from the O to the
LO regime occurs as the intensity is increased. The corresponding picture is
this: as the intensity is increased, the limit cycle associated with the O regime
collides with an unstable fixed point thus preempting the gluing at the origin.
This dynamical sequence suppresses the appearance of the PR regime.

Starting from the PR or QPR regime and increasing the intensity, an in-
stability eventually occurs at ρ = ρL (which depends on χ, see Fig. 12) and
the director settles to a largely reoriented oscillating (LO), stationary distorted
(LD) or rotating (LR) state (the latter one exists in a narrow region ∆χ ∼ 10−2

around χ = π/4). From Fig. 12 we see that the final state above ρL is a LO
state if χ < 0.45 and a LD state if χ > 0.45. It was found that the transi-
tion from the PR or QPR regime to the largely reoriented states is related to
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Table 1. Calculated sequence of bifurcations as a function of the ellipticity χ of the incident
light.

Ellipticity Sequence of transitions Bifurcation nature

0.33 < χ < 0.53 Unperturbed → Distorted Pitchfork
Distorted → Periodic oscillation Supercritical Hopf

Periodic oscillation → Periodic rotation Gluing
Periodic rotation → Periodic oscillation or distorted Homoclinic a

0.53 < χ < 0.72 Unperturbed → Distorted Pitchfork
Distorted → Periodic oscillation Supercritical Hopf

Periodic oscillation → Periodic rotation-1 Gluing
Periodic rotation-1 → Periodic rotation-2 Saddle-node

Periodic rotation-2 → Distorted Homoclinic b

0.72 < χ < π/4 Unperturbed → Distorted Pitchfork
Distorted → Periodic oscillation Supercritical Hopf

Periodic oscillation → Periodic rotation-1 Gluing
Periodic rotation-1 → Periodic rotation-2 Saddle-node

Periodic rotation-2 → Quasi-periodic rotation Supercritical Hopf
Quasi-periodic rotation → Homoclinic c

Distorted or periodic rotation

χ = π/4 Unperturbed → Periodic rotation Subcritical Hopf
Periodic rotation → Quasi-periodic rotation Supercritical Hopf
Quasi-periodic rotation → Periodic rotation Homoclinic c

a small jump of the director amplitude
b small [large] jump of the director amplitude for χ < 0.66 [χ > 0.66]
c large jump of the director amplitude

Table 2. Spectral content of the director components nx,y, the output intensity components
Ix,y and the phase delay ∆ for the different dynamical regimes for an elliptically polarized
excitation.

Regime nx,y Ix,y ∆

Periodic oscillation (O) nf0 nf0 nf0

Periodic rotation (PR) (2n − 1)f0 2nf0 2nf0

Quasi-periodic rotation (QPR) nf1 ± (2m + 1)f0 nf1 ± 2mf0 nf1 ± 2mf0
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Figure 14. Characterization of the homoclinic bifurcation near ρL for χ = 0.57, T (ρ) =
O[ln(ρL − ρ)], where T is the period of the instantaneous angular velocity Ω(τ ) = dΦ0/dτ .
The solid line is the best fit to the theoretically calculated values (•). Inset: time evolution of
Ω(τ ) at ρ = 1.02025. A perfect agreement with the calculated values (filled circles) is obtained
with the parameterizations a + b ln(ρL − ρ) for a ' 8.232 and b ' −2.406 (solid line).

an increase of the period of the corresponding limit cycle. More precisely, this
period appears to diverge logarithmically at ρ = ρL. This behavior is illus-
trated in Fig. 14 for χ = 0.57. In this figure, the period of the instantaneous
angular velocity Ω(τ) = dΦ0/dτ is plotted as a function ρ. The origin of
this critical slowing down near the bifurcation point is illustrated in Fig. 15
where the director trajectory in the (nx, ny) plane is shown. Slightly below ρL

(ρ = 1.02025, black solid line on the left) the trajectory approaches a saddle
fixed point (open circle) during increasingly long times; this corresponds to
the “plateau" behavior when Ω ∼ 0 in the inset of Fig. 14. On the other hand,
slightly above ρL (ρ = 1.02026, gray line in Fig. 15), the director eventually
settles to a stable focus (filled circle) that corresponds to a LD state. (The
stable LD state in the present example [just above ρL for χ = 0.57] is repre-
sented by a stable focus in that for lower values of χ the director settles to a
LO state above ρL.) In fact we deal at ρ = ρL with a homoclinic bifurcation of
the simplest type where a limit cycle collides with a saddle point having only
one unstable direction (all the eigenvalues have negative real part except one,
which is real and positive) [42].

As was discussed in the previous section a LR state appears at high intensi-
ties for the circular case (χ = π/4). This slow dynamics is quite fragile and
disappears for perturbation of the ellipticity as small as ∆χ ∼ 10−2, giving
rise to a LD regime instead. The mechanism for the disappearance of the LR
regime is the following. In the CP limit, the precession frequency associated
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Figure 15. Director trajectory in the (nx, ny) plane near the homoclinic bifurcation point ρL

at χ = 0.57. Inset: homoclinic PR trajectory slightly below ρL (ρ = 1.02025). Main graph:
magnification of the region delimited by the box in the inset. The black solid line on the left is
part of the PR trajectory at ρ = 1.02025 and the gray line is the transient trajectory converging
to a stable fixed point just above ρL (ρ = 1.02026). The dashed line (solid line on the right)
represents the location of the unstable (stable) fixed points in a small range of ρ centered around
ρL. The open and filled circles represent respectively the unstable and the stable fixed point at
ρ = 1.02025 and ρ = 1.02026.

with the LR state exhibits almost periodic modulation as a function of the in-
tensity with zero minimum values. As soon as the ellipticity is reduced, the
points of zero frequency are transformed into finite regions which continue to
increase as χ is further decreased. Eventually, these regions join leading to the
LR → LD transition.

In the region of largely reoriented states, the LO regime appears for χ <
0.51 [see Fig. 12]. This state is characterized in the (nx, ny) plane by a limit
cycle with a small radius [see curve 4 in Fig. 13(a)]. It was concluded [50]
that the LD states [which were stable at ρ = ρL] lose their stability at some
higher value of ρ in the range 0.45 < χ < 0.51, leading to a LO state. In
fact, the transition LD → LO takes place via a Hopf bifurcation. Moreover,
these unstable LD states eventually recover their stability at higher intensities
leading to the inverse transition LO → LD.

The observation of the QPR regime for ellipticities close to circular polariza-
tion gave results which agree qualitatively with the above theoretical findings
[50]. To gain quantitative agreement one again should refine the theory by i)
inclusion of flow; ii) taking into account the effect of finite beam size. We
think, however, that neither the former, nor the latter effect would lead to sub-
stantial differences (provided the beam is not several times narrower than the
cell width).
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6. Finite beam-size effects and transversal pattern
formation

As mentioned in the introductory sections, using the 1D assumption to solve
the relevant equations of motion is a simplification that is relaxed very rarely.
Although a number of works dealt with the OFT in nematics using Gaussian
beam profiles [51, 52], these works dealt exclusively with the primary instabil-
ity and with the properties of the stationary reoriented state above the transition
in various geometries. Dynamical phenomena were not considered in any the-
oretical works, even though there are experiments proving that, decreasing the
width of the beam yields very interesting dynamical behaviour and even chaos.
One example is [13], where a circularly polarized light, incident perpendicu-
larly on a cell of nematic was observed to induce various dynamical regimes.
The ratio of the beam width to the cell width δ = w0/L was treated as a con-
trol parameter alongside the intensity ρ, and the various bifurcation scenarios
were compared as δ and ρ were changed. It was found that for δ ≈ 0.3 − 0.4
novel dynamical regimes and even chaotic oscillations could be observed. It
was argued that a spatial mismatch between the ordinary and extraordinary
waves that develops within the cell during propagation may have something
to do with these phenomena. Another study [53] investigated the dynamics
induced by a strongly astigmatic beam of circularly polarized light, again with
normal incidence. The light of an astigmatic beam carries not just the usual
spin angular momentum of circularly polarized photons, but also orbital angu-
lar momentum. It was shown in this study that as the astigmatism of the beam
is increased above a certain level, (i.e. if the orbital component of the angular
momentum reaches a certain ratio to the spin angular momentum component),
chaotic rotation of the molecules can be observed. Both of these experiments
emphasize that the laser beam shape can be an important control parameter,
whose change gives rise to complex dynamics. A proper theory, however, that
can account for the physical reasons, or the nature of the transitions is missing
altogether.

Another possibility to consider is, that even if the light is incident on the cell
as a plane wave, pattern formation may occur in the plane of the layer sponta-
neously. In other words, the spatially homogeneous state may loose stability
to a finite wavelength perturbation, and a dependence of the physical quanti-
ties on the transverse coordinates may develop. There are several arguments
to suggest that such instabilities are to be expected. On one hand, it is known
[54, 55] that periodic patterns can develop in the magnetic or electric field in-
duced Freedericksz transition in nematics, if the anisotropy of the elastic con-
stants reaches a certain value (i.e. if three elastic constants are sufficiently dif-
ferent). It is also known [56], that any, almost homoclinic limit cycle is gener-
ically unstable with respect to spatiotemporal perturbations. This instability
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is either a phase instability or a finite wavelength period doubling instability.
This means that we can certainly expect very complicated behaviour (probably
spatio-temporal chaos) to develop in the vicinity of the homoclinic bifurca-
tions that were found in the 1D calculations in various geometries. Solving the
relevant PDEs in 2 or 3 dimensions to search for transversal pattern formation
phenomena would be prohibitively difficult. However, investigating the stabil-
ity of various spatially homogeneous states with respect to finite wavelength
perturbations is much easier and has been performed in several cases.

In [11], the simplified models of director dynamics in two geometries were
examined. One was the director dynamics induced by obliquely incident, lin-
early polarized light. The simple model of this geometry [23] (see section
3.) was generalized to include a slow x − y dependence of the amplitudes
A1, A2, B1. Performing a linear stability analysis of the basic state with this
extended model it was found that the undistorted homeotropic state always
loses stability in a spatially homogeneous bifurcation, i.e. ~kc = 0. (In the
course of any linear stability analysis one considers spatially periodic pertur-
bations, and the wave vector ~k of the mode that destabilizes the stationary state
is called the critical wave vector ~kc - if this is zero, the instability is said to be
homogeneous.) This is true for both the stationary OFT (curve 1 on Figure 4)
and the oscillatory OFT (curve 2 on Figure 4). For the case of the oscillatory
OFT the relevant complex Ginzburg-Landau equation was derived which de-
scribes the behaviour of the system in the weakly nonlinear regime. The linear
dispersion parameter in this equation turns out to be zero, while the nonlin-
ear dispersion parameter is in such a range that one expects stable plane wave
solutions, spirals and - in 1D - stable hole solutions [57]. The stability of the
stationary distorted state above the OFT was also investigated. It was found
that the secondary Hopf bifurcation which destabilizes it is homogeneous only
if the Frank elastic constants are all equal (K1 = K2 = K3), but is not ho-
mogeneous otherwise. In fact ~kc 6= 0 for any degree of anisotropy of the
elastic constants (here reflection symmetry is broken by the primary transition,
so ~kc 6= 0 is actually the generic case). This is contrary to the magnetic field
induced transition, where there is a lower threshold to the ratio K1/K2 [54]
or K3/K1 [55] below which ~kc = 0 and no stripes appear. Since the insta-
bility is nonstationary, a finite ~kc means the appearance of travelling waves.
The magnitude of ~kc grows with the anisotropy of the elastic constants and its
direction (the direction of wave propagation) is roughly parallel to the in-plane
component of the director ~n⊥.

Another simple model investigated in [11] is a model of the director dynam-
ics induced by circularly polarized light using three variables. The stability of
the basic state and the uniformly precessing state above the OFT was inves-
tigated, and it was found that both of these states remain stable against any
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finite k perturbation too. The phase diffusion equation for the precessing state,
that describes the spatial evolution of phase disturbances [58] was also derived.
The general form of this equation is ∂tψ = a∇2ψ + b(∇ψ)2. In our case, the
spatially dependent phase perturbation is ψ = B0 − Ωt and the real constants
appearing in the equation turn out to be: a = (K1 + K2)/K3, b = 0. This
means that we have plane wave solutions (B0 ∼ qx + py), but without group
velocity. These are the only attractors and presumably all solutions decay to
such states apart from topological point defects. Vortex-like topological de-
fects, whose core however is not described by this equation, should also exist.

The linear stability analysis of the stationary distorted state above the OFT
induced by obliquely incident, linearly polarized light was repeated in [12], this
time without the numerous approximations used in earlier works, using numer-
ical methods. In addition, dye-doped nematics were considered, for which the
threshold for the OFT is much lower and thus permits the experimental real-
ization of a light beam that is much wider than the cell width. For this case,
however, absorption also has to be taken into account, which means that the
OFT does not happen at ρ = 1 for perpendicular incidence (see Fig. 16). Tak-
ing all this into account, the exact reorientation profiles for the director were
calculated numerically first, and its stability was investigated with respect to
spatially periodic perturbations (proportional to exp[i(qx + py)]). Then the
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Figure 16. Bifurcation diagram of a dye-doped nematic excited by obliquely incident, linearly
polarized light as a function of the intensity ρ and the dimensionless phase parameter κ, which is
proportional to the sin2(α). H marks the domain where the homeotropic orientation is stable.
The line of OFT consists of two parts, for small angles it is a stationary bifurcation (solid line)
and for higher angles a Hopf bifurcation (dashed line). The domain of stationary distortion is
marked SD. The dash-dotted line marks the secondary Hopf bifurcation which gives rise to
travelling waves in the plane of the layer.
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Figure 17. Contour plot of the neutral surface as a function of the dimensionless wave vector
components pL and qL calculated for α = 11◦. The minimum of the surface yields the critical
wave vector components qcL = 0.11 and pcL = −0.06.

neutral surface ρ(q, p) was calculated (defined by the vanishing real part for
the linear growth rate for the perturbation Re[σ(q, p)] = 0 - see Fig. 17). The
minimum of the neutral surface defines the components of the critical wave
vector qc, pc, which destabilize the stationary distorted state as the intensity is
increased. The intensity value ρ(qc, pc) is the critical intensity at which the
transition occurs. Since we have a nonzero wave number, and also a nonzero
frequency, travelling waves are expected to appear above the transition. This
analysis also confirmed, that the critical wave vector grows as the ratio of the
elastic constants deviates from one, and is zero if all elastic constants are equal.

An interesting situation also came to light in the limit of normal incidence.
This case was impossible to analyze in the framework of the approximate
model, as the modes become large quickly and violate the initial assumptions.
It turned out that for α = 0 (which is a peculiar case since the external symme-
try breaking in the x direction vanishes), another stationary instability precedes
the secondary Hopf bifurcation, that spontaneously breaks the reflection sym-
metry with respect to x. It is shown by point A in Fig. 18. It is also seen from
this figure, that the secondary pitchfork bifurcation is destroyed in the case of
oblique incidence, which can be interpreted as an imperfect bifurcation with
respect to the angle α [43].
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Figure 18. Profiles of the director components nx, ny versus ρ at some z inside the layer (not
at the middle). Solid and dashed lines correspond to α = 0◦ and α = 0.5◦ respectively. ρth is
the threshold intensity of the OFT. Point A is a pitchfork bifurcation to a stationary state with
broken x-reflection symmetry (α = 0 ◦).

Conclusion and Outlook

As shown in the preceding sections, the behaviour of nematics excited by
light can be extremely complex. Theoretical models reveal relatively simple
reasons behind the dynamics only in a few cases. More often, experiments
and elaborate computer studies show that a number of factors govern the com-
plex behaviour together: director distortion induced by light, light propagation
change due to reorientation, flow of the fluid and the effects of finite beam size
all become factors to reckon with at some point or another.

There has also been a number of works devoted to some generalization of
the simple system that was the subject of the present paper. One of these is
the attempt to control the chaotic oscillations induced by an obliquely inci-
dent laser light with the use of additional laser beams [59]. Another one is
the investigation of the response of nematics driven by circular polarized light
with a periodically modulated intensity near a Hopf bifurcation. Calculations
showed that the f1/f = 2/1 Arnold tongue (f [f1] is the frequency of modula-
tion [nutation]) has a large width and there is a rather large region in the plane
of amplitude - modulation frequency, where the director exhibits chaotic be-
haviour followed by a cascade of periodic doubling bifurcations [60]. A third
example is the case of a long-pitch cholesteric liquid crystal. There the dynam-
ics can be viewed as the result of the competition between the intrinsic unidi-
mensional helical pattern (related with the chiral dopant) and the extrinsic one
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(related with the light). It was found [61] for the case of circular polarization,
that the dynamics is more complex than that for a pure nematic and depends
strongly on the amount of the chiral dopant.

The study of these complex systems is important because they exhibit a
large variety of nonlinear phenomena. While these are all known from the
theory of nonlinear systems, many of these were investigated experimentally
only in a few cases, or sometimes not at all. Therefore this relatively simple
experimental system may be an important tool to realize and analyze various
complex scenarios that appear in nature, and may still have many surprises in
store.
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