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Nonlinear systems, whose outputs are not directly proportional to their inputs, are well known to exhibit many
interesting and important phenomena that have profoundly changed our technological landscape over the last
50 years. Recently, the ability to engineer quantummetamaterials through hybridization has allowed us to explore
these nonlinear effects in systems with no natural analog. We investigate amplitude bistability, which is one of the
most fundamental nonlinear phenomena, in a hybrid system composed of a superconducting resonator inductively
coupled to an ensemble of nitrogen-vacancy centers. One of the exciting properties of this spin system is its long
spin lifetime, which is many orders of magnitude longer than other relevant time scales of the hybrid system. This
allows us to dynamically explore this nonlinear regime of cavity quantum electrodynamics and demonstrate a crit-
ical slowing down of the cavity population on the order of several tens of thousands of seconds—a time scale much
longer than observed so far for this effect. Our results provide a foundation for future quantum technologies based
on nonlinear phenomena.
d from

 on D

ecem
ber 8, 2017

http://advances.sciencem
ag.org/

 

INTRODUCTION
In nature, most physical systems are inherently nonlinear, giving rise to
effects, such as bistability (1), chaos (2), solitons (3), and superradiance
(4), and often appear counterintuitive when contrasted withmuch sim-
pler linear systems. Amplitude bistability, one of the basic nonlinear
phenomena [commonly used in optical switches nowadays (5)], has
been extensively investigated both theoretically (6–10) and experimen-
tally (11, 12). It occurs in anymediumwhere strong nonlinearities in the
interaction between a radiation field and a polarizable medium, such as
spins, exist. The nonlinearity in these systems arises from the two-level
nature of the atoms coupled to the cavitymode but only shows upwhen
driven beyond the single excitation regime. For a strong coupling be-
tween the spin systemand the cavitymode, a first-order phase transition
between a saturated, disordered, and de-excited, ordered ground state
occurs (13). The coupled system switches between these two branches
and shows a hysteresis depending on the history of the system.

The usual cavity quantum electrodynamics (cQED) demonstrations
use atoms or trapped ions coupled to optical light fields to investigate
these nonlinear effects, but the short atomic lifetimes have made it dif-
ficult to truly observe the temporal dynamics of amplitude bistability
(14, 15) and restricted previous studies to the steady-state behavior.
In contrast, quantum engineering by hybridizing different physical
systems and by exploiting their advantages (16–21) allows us to create
systems with extremely long-lived emitters, making it possible to ob-
serve the bistable system during evolution. Here, we report on the ob-
servation of amplitude bistability in a cQED system composed of a
superconducting resonator coupled to a long-lived electron spin ensem-
ble formed from artificial atoms [negatively charged nitrogen-vacancy
(NV−) centers in diamond (22, 23)]. This type of system has been stud-
ied extensively (17, 18), but experiments to date have been mainly
carried out in the linear regime. The present work goes beyond this
linear regime and thus provides the foundation for further understand-
ing of nonlinear physics in this type of solid-state hybrid quantum sys-
tem. Moreover, the long lifetime of the spin system (24) allows us to
study the temporal behavior of the presented effect, a regime experi-
mentally just recently accessed (25, 26).
RESULTS
Equations of motion from the Tavis-Cummings Hamiltonian
An ensemble of spins in a cavity is characterized by the three quantities:
polarization, inversion, and the cavity amplitude. Their dynamics can
bederived fromthedrivenTavis-CummingsHamiltonian (27) forN spins
under the rotating wave approximation as

H ¼ ℏwca
†aþ ℏ

2
∑N

j¼1wjs
z
j þ iℏ∑N

j¼1gjðs�j a†�sþj aÞ þ

iℏðha†e�iwpt � h:c:Þ ð1Þ

with a† and a being the creation and annihilation operators for the cav-
ity mode of frequency wc, respectively, and sj

z, sj
+, and sj

− as the spin
inversion, raising, and lowering operators, respectively, for the j-th spin of
frequency wj coupled to the cavity with a single-spin coupling strength
gj. The last term accounts for an external cavity drive with field ampli-
tude h and frequency wp.

Using a mean-field approximation, valid in the limit of large spin
ensembles, 〈a†s−〉 ≈ a†s− (in the following, unbolded symbols will be
used for the expectation values), we derive a set of first-order differential
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equations, formally equivalent to the well-known Maxwell-Bloch
equations (28) as

a: ¼ �kaþ∑jgjs
�
j þ h

s�j
: ¼ �ðg⊥ þ iQjÞs�j þ gjszj a
szj
: ¼ �g∥ð1þ szj Þ � 2gjðs�j a† þ sþj aÞ

ð2Þ

with cavity dissipation rate k, transversal spin relaxation rate g⊥ =
1/T2, and longitudinal spin relaxation rate g∥ = 1/T1. The relaxation
rates are ordered as k > g⊥ ≫ g∥ such that the longitudinal decay
of the spin inversion is by far the slowest process.Qj are the frequency
detunings with respect to the ensemble central frequency to account
for inhomogeneous broadening. Setting the time derivatives to zero, the
steady state of this system can be written as

aj j2 ¼ h2

k2
1�∑jCjs

z
j

� ��2
; szj ¼ � 1þ 4g2j aj j2g⊥

g∥ðg2⊥ þ Q2
j Þ

 !�1

ð3Þ

where the dimensionless parameter Cj = gj
2/[k g⊥(1 + Qj

2/g⊥
2)] is the

single-spin cooperativity. The collective system cooperativity is given
accordingly by Ccoll = ∑j Cj.

We can classify the expected system phase transition by deriving a
solution for the time-dependent cavity amplitude |a(t)|2. The difference
in dissipation rates allows us to adiabatically eliminate the a and sj−

variables (29), which results in a first-order differential equation for
the intracavity intensity. For the giant Sz = ∑j sj

z spin in resonance
(Qj = 0) with the cavity mode, it can be written as

d aj j2
dt

¼ � 8Ccollk2 aj j5
h

þ 8Ccollk aj j4 � 2kg∥
h

ð1þ CcollÞjaj3 þ 2g∥jaj2
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For our typical system parameters and a strong enough coupling,
this equation predicts a first-order phase transition that connects a
strongly driven branch and a weakly driven branch, with hysteresis
and two saddle-node bifurcations (30) at which the transition between
both branches occurs.

In contrast to amplitude bistability using a small number of emitters
(25, 26), in our case, the sizeable number of spins allows us to neglect
quantum fluctuations, which means that a blinking between the two
stable solutions does not occur on an experimentally accessible time
scale.

The hybrid quantum system
The hybrid system is shown in Fig. 1 and is composed of an electron
spin ensemble formed by NV centers in diamond, loaded onto a super-
conducting l/2 resonator. To thermally polarize the N ≈ 1012 electron
spins to their ground state (≥99%), we put the system in a dilution re-
frigerator at 25mK.Each electron spinhas a zero-field splitting ofD/2p≈
2.878 GHz and an average coupling rate of g0/2p ≈ 12 Hz to the cavity
mode. We estimate the transversal relaxation rate as g⊥/2p ≤ 33 kHz
and the longitudinal relaxation rate as g∥/2p ≤ 3.6 mHz (see Materials
andMethods) (18, 24). The superconducting resonator has a cavity line-
width of k/2p = (440 ± 10) kHz (half width at half maximum) with a
fundamental resonance frequency at wc/2p = 2.691 GHz and a loaded
Angerer et al., Sci. Adv. 2017;3 : e1701626 8 December 2017
quality factor ofQ = 3300. An external microwave field with frequency
wp is used to probe the hybrid system.

Steady-state amplitude bistability
First, we search for the bistable behavior in the steady state bymeasuring
the transmitted intensities through the cavity, defined by |T|2 = Pout/Pin
as a function of the input drive intensity Pin≈ h2/k and outgoing intensity
Pout≈ |a|2k. The drive power is raised in a stepwisemanner, which is slow
enough to allow the system to reach a steady state for each stimulus Pin. For
small excitations, the intracavity intensity is not sufficient to saturate the
spin ensemble (sj

z ≈ −1) and is thus given by |a|2 = h2/[k(1 + Ccoll)
2].

As the power level increases, the cavity field bleaches the spins (sj
z ≈

sj
−≈ 0) such that the Rabi splitting vanishes and the spin systemdecou-

ples from the cavity (Fig. 2). The intracavity intensity |a|2 = h2/k2 is that
of an empty cavity from which spins are completely decoupled.

This nonlinear saturation behavior is a necessary precursor to the ob-
servation of amplitude bistability. However, whether this is observable in
the experiment is determined by the system’s collective cooperativity.
This is apparent from Eq. 3, where larger cooperativity values result
in stronger nonlinearity and thus a larger phase separation.

In contrast to a homogeneously broadened spin ensemble where
analytic expressions for the critical cooperativity to observe bistability
exist (Ccoll ≥ 8) (10), the inhomogeneous broadening requires numer-
ical solutions to determine the bistability threshold (see Materials and
Methods). The finite width of the spin distribution markedly increases
the required collective cooperativity for which bistability can be ob-
served (31). In the present case of an inhomogenously broadened line
with G/2p = 9.5 MHz (full width at half maximum), we predict a critical
cooperativity ofCcoll = 42.4. For lower values of the collective cooperativity,
the intracavity intensity as a function of the input drive is a continuous
function, whereas at the critical cooperativity, the system response
+ + + + + ... 

Ground

Excited
mJ = +N/2

g g g g g

e e e e e

Pin Pout

Vacuum

Giant spin J =N/2

(n + 5)

(n + 1)

(n + 2)

(n + 3)

(n + 4)

A

B

1 mm

|mJ = −N/2

Fig. 1. Hybrid quantum system. (A) Experimental setup. Schematic illustration
of our experimental setup in which an ensemble of spins (described as an effec-
tive giant spin) is inductively coupled (with a coupling rate W) to the cavity mode.
The nonlinearity stems from the anharmonicity of this coupled spin when driven
beyond its linear regime, which we probe through the transmission |T|2 = Pout/Pin
of the hybrid system. (B) Photograph of the system consisting of a superconduct-
ing transmission line cavity with an enhanced neutron-irradiated diamond on top
of it, containing a large ensemble of NV spins (black). Two coupling capacitors
provide the necessary boundary conditions for the microwave radiation.
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becomes a step function and, at two critical drive values Pucrit and P
d
crit (see

Fig. 3, B andC), the system switches between these two branches under-
going a first-order phase transition.

In Fig. 3, we show steady-state bistability measurements for three
cooperativity values Ccoll = 18, 49, and 78. The lowest value Ccoll = 18
does not show bistability (Fig. 3A), but increasing the cooperativity to
Ccoll = 49 (seeMaterials andMethods) allows us to observe the first signs
of bistable behavior (Fig. 3B). This value is close to the expected value
for the critical cooperativity of Ccoll = 42.2 for our system parameters.
Increasing the cooperativity further to Ccoll≈ 78, we observe amplitude
bistability (Fig. 3C) within a 2-dB range. This steady-state bistability be-
havior is well reproduced by a full numerical simulation, with in-
homogeneous broadening taken into account (dashed lines in Fig. 3,
A to C).

Quench dynamic measurements
Given this evidence of amplitude bistability, we focus next on the tem-
poral behavior of the hybrid system using quench dynamic measure-
Angerer et al., Sci. Adv. 2017;3 : e1701626 8 December 2017
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ments. We start by preparing the spin ensemble in one of the two
extremal states, either polarized in the ground state or completely
saturated and decoupled from the cavity. These initial states are
prepared by setting the cavity input power to Pin = 0 or Pin ≫ Pdcrit
for several minutes, respectively. The drive power is then nonadiabati-
cally switched to a different drive level, and the system transmission is
monitored. We repeat this measurement several times, always prepar-
ing the system in the same initial state but switching to different target
drive powers. When the system is driven close to the bifurcation point
(Pin≈ Pdcrit), the time scales needed to settle in a stationary state become
as long as 4 × 104 s, as depicted in Fig. 4.

The behavior can be linked to our model given in Eq. 4, which pre-
dicts that our system features two critical drive values Pucrit and Pdcrit at
which a saddle-node bifurcation occurs (30). For input powers between
Pucrit and Pdcrit, two attractors coexist, and the system evolves to one of
these attractors, depending onwhether they are approached frombelow
or above the bistable region. These two attractors, one with polarized
and ordered spins and the other one with unordered and saturated
spins, are connected by a first-order phase transition if the system co-
operativity is large enough (see Fig. 3C).When driven far away from the
critical drive values either in the strongly or in theweakly driven branch,
the system approaches a steady state on a characteristic time scale
determined by the slowest decay rate in the system—given by the lon-
gitudinal decay g∥ for our implementation. The system settles in a sta-
tionary state at which the external drive and dissipation are equal and
opposite in effect. Close to the critical points Pdcrit and Pucrit, the system
becomes scale-invariant and is characterized by an infinite correlation
time (32)—an effect referred to as “critical slowing down” (15, 33). In the
presented experiment, we deal with a saddle-node bifurcation, where the
dynamics exhibits power law divergence close to the critical drive value.

This behavior is shown in Fig. 4 (A to C) where, close to the critical
drive, the system evolves toward the upper unstable fixed point, with a
time derivative that can approach zero arbitrarily closely (inset in Fig.
4B). Small deviations from the critical drive lead to a speed up in the
evolution until the system relaxes to a real steady state. The time it takes
to go from the upper to the lower branch diverges close to the critical drive
according to tswitch≈ |Pin − Pdcrit|

−a, as shown in Fig. 4C, with a ≈ 1.20 ±
0.04. For the simplest case of a saddle-node bifurcation after a cubic
 8, 2017
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Fig. 3. Steady-statebistability.Wemeasure the steady-state bistability transmission through the cavity as a functionof increasing (blue) anddecreasing (red) input power Pin. In
(A), the transmission measurements are plotted for the cooperativity value Ccoll ≈ 18 and k/2p = 1.2 MHz using two subensembles in resonance with the cavity. (B) Same
transmission measurement with Ccoll ≈ 49 and k/2p = 0.44 MHz. A small bistability area is visible where the system evolves to different steady states depending on the history
of the system in either upper or lower branch. (C) Samemeasurement as in (A), with an increased cooperativity of Ccoll ≈ 78 (by using all four NV subensembles in resonance with
the cavity), again with k/2p = 0.44 MHz. The dashed curves are numerical solutions of Eq. 3. The dashed lines in (B) show the asymptotic solutions in the limit of large and small
drive amplitudes h. Two critical values of the input power, at which a phase transition between two stable branches occurs, are characterized by a saddle-node bifurcation and
labeled as Pucrit and P

d
crit. For all three cases, a sketch of the corresponding potential is also depicted, which shows the occurrence of either one or two stable solutions (red and blue

solid circles) and one unstable solution (B and C) (green solid circles) for a fixed value of the input power. Tunneling through the potential barrier does not occur in our case
because of the large system size such that the system does not switch back and forth between the steady states in the bistable area.
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Fig. 2. Rabi splitting under different drive powers. Evolution of the transmission
spectrum for different input drive powers Pin. In the linear regime, the Rabi splitting is
observable. For a drive power Pin ≈ Pref, the spin system starts to bleach and decouples
from the cavity. For input drives Pin ≫ Pref, we observe the bare cavity transmission
function. This behavior can be seen from the projection of the observed maximum
transmission peaks on the xyplane.Whendriving the system resonantly (greendashed
line) and with a large enough cooperativity, operating between these two regimes
exhibits amplitude bistability.
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function, the phase transition shows an algebraic divergence with a
critical exponent a = 1. The more complicated set of equations in the
present case changes this critical exponent to the larger value a≈ 1.20 ±
0.04. The exact value depends on the precise structure of the so-called
normal form (34), as given by Eq. 4 for the homogeneously broadened
case. Comparing these experimental results with the full numerical
solutions of Eq. 2, including inhomogeneous broadening, we observe
excellent agreement (see Fig. 4A). For the quench from low-power
levels to the high-power levels, we observe a similar behavior with the
same critical exponent.
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DISCUSSION
In summary, we have shownhow a hybrid system composed of a super-
conducting resonator coupled to an electron spin ensemble in diamond
can be used to explore amplitude bistability in new regimes of cQED,
with unusual decay rates where the spin lifetime is much longer than
other decay constants in the system. This regime allows us to study the
temporal evolution of the phase transition explicitly, something exper-
imentally difficult to achieve using the standard cQED implementa-
tions. We observe a critical slowing down of the cavity population on
the order of 11 hours, a time scale several orders of magnitude longer
than observed so far for this effect andmany orders ofmagnitude longer
than other time scales associated with the system. Our experiment pro-
vides a foundation for the exploration of additional nonlinear phenome-
na in quantummetamaterials and future quantum technologies thatmay
arise from it. One of the possible applications is microwave isolators and
diodes thatmake use of the fact that the transmission intensity is different
depending on the history of the system. For a large enough value of the
collective cooperativity, our system provides an isolation of more than
four orders of magnitude for a given input power in the bistable regime.
By reducing the number of emitters, the nonlinearity in the system pro-
vides a way to create nonclassical states, such as spin-squeezed states,
which are impossible to realize in a purely linear system. This paves
the way toward possible applications in high-sensitivity magnetic field
sensing and quantum metrology.
Angerer et al., Sci. Adv. 2017;3 : e1701626 8 December 2017
MATERIALS AND METHODS
Sample
The spin systemwas realized by enhancing a type Ib high-pressure high-
temperature diamond crystal containing an initial concentration of 200
parts per million (ppm) of nitrogen, with a natural abundance of 13C nu-
clear isotopes.We achievedNV− centerswith a total density of≈6 ppmby
50 hours of neutron irradiation with a fluence of 5 × 1017 cm−2 and by
annealing the crystal for 3 hours at 900°C. Excess nitrogenP1 centers
(S = 1/2), uncharged NV0 centers, and additional lattice stress are the
main source of inhomogeneous broadening, which exceeds decoherence
because of thenaturally abundant 1.1%13C spinbath.The characteristics of
the diamond crystal andNV ensemblewere initially determined at room
temperature using an optical confocal microscope.

Spin system
The NV− center is a paramagnetic point-defect center in the diamond
with an electron spin S = 1, consisting of a nitrogen atom replacing a
carbon atom in the diamond lattice and an adjacent vacancy. The
ground spin triplet can be described by a simplified Hamiltonian H =
ħDSz

2 + ħmBzSz, with m = 28 MHz/mT and a large zero-field splitting of
D/2p =2.877GHz. The splitting corresponds to a temperature ofD/hkb=
138mK, which allows to thermally polarize the spins in the ground state
at the fridge base temperature of 25mKwith up to 99% fidelity. Because
of its crystallographic diamond structure, four different NV subensem-
bles, with equal abundance (pointing in the [1, 1, 1] direction), exist. By
applyingB≈ 30mTwith either 0° or 45° relative to the [1, 0, 0] direction
in the NV resonator plane, we could Zeeman-tune four or twoNV sub-
ensembles into resonance with the cavity mode.

Superconducting resonator
Themicrowave cavity was loaded by placing the diamond sample on top
of a l/2 transmission line resonator. The superconducting microwave
cavity was fabricated by optical lithography and reactive ion etching
of a 200-nm-thick niobium film sputtered on a 330-nm-thick sapphire
substrate. The loaded chip was hosted and bonded to a printed circuit
board enclosed in a copper sarcophagus and connected to microwave
A B C

Fig. 4. Quench dynamics measurement. Quench dynamics of the high cooperativity Ccoll ≈ 78 configuration and an initial state far in the strong driving branch. In (A), the
intracavity intensity |T|2/|Tmax|

2 is plotted over time for different drive intensitieswhere the time to reach a steady state strongly depends on the input intensity. For drive intensities
larger than a critical drive value Pdcrit (defined as the power where the system undergoes the phase transition from the upper to the lower branch, see Fig. 3), the spin system
remains saturated and sets into a state on the upper branch,whereas in theopposite case, the systemevolves into a steady state on the lower branch. Close to the critical drive Pdcrit,
this time scale is extremely prolongedandapproaches 4×104 s. Thedashed lines correspond topredictions fromourmodel. In (B), we show thephasediagramasd|T|2/dtover |T|2

for the evolution toward a steady state (black dotted line) for different input drives Pin. For drive powers close to the critical drive, the derivative approaches zero, and thedynamics
becomes much slower compared to drive powers larger and smaller than the critical drive. In (C), the switching times between the upper and lower branch for different input
drives are shown. We define the switching time tswitch as the inverse of the smallest gradient for a given curve [green circle in (A) and (B)]. Close to the critical drive, the switching
time diverges, and the time to reach a steady state becomes arbitrarily long. The solid red line is a fitting function of the form tswitch ≈ |Pin − Pdcrit|

−a (with a = 1.20 ± 0.04).
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transmission lines. The cavity exhibited a linewidth of k/2p = 440 kHz,
which we could increase to k/2p = 1.2MHz by applying weakmagnetic
fields perpendicular to the resonator plane that partially quenched the
superconducting material. The cavity was coupled to the environment
such that the internal losses of the cavity were much smaller than the
coupling losses (kint ≪ kext). This allowed us to approximate the total
losses as k ≈ kext.

Transmission measurements
Transmission measurements were performed by recording the for-
ward scattering parameter |S21|

2 of the hybrid system using a standard
vector network analyzer (Agilent E5071C). To perform steady-state
bistability measurements, we probed the system first with increasing
power levels. For each power level, wemonitored the transition until a
steady state was reached. We increased the drive power until the
steady state lay far in the high driving branch, after which the power
was lowered again in a stepwisemanner.We identified bistability if the
system showed different steady states when drivenwith increasing and
decreasing power. From Eq. 3, we immediately found that the asymp-
totic behavior of the transmission intensity |T|2 = |a|2k2/h2 is de-
scribed by |Tlow|

2 = (1 + Ccoll)
−2 in the single excitation regime and

by |Thigh|
2 = 1 in the large excitation regime. The difference in the

transmission between these two regimes is therefore only determined
by the collective cooperativity Ccoll = ∑j gj

2/[k g⊥(1 + Qj
2/g⊥

2)].

Quench dynamic measurements
Quench dynamics measurements were used to measure the temporal
behavior of the observed effect. For this, we initialized the system in
an initial state far in the large driving regime with a strong drive for
several minutes. After this state preparation where the spin system
was completely decoupled from the cavity, the drive power was nona-
diabatically switched to a lower drive, with transmission monitored for
different target drive levels. We monitored the transmission until the
time derivative of the transmission amplitude became smaller than an
arbitrarily chosen threshold, which we then identified as our steady
state.

Transversal decay rate
We used Car-Purcell-Meiboom-Gill–like sequences to get an estimate
for the spin-spin relaxation time (T2 = 1/g⊥). The best achievable echo
times in our experiment were T2 = (4.8 ± 1.6) ms, which we identified as
a lower bound for our relaxation times. The real spin-spin relaxation
times were potentially longer, but misalignment of the external dc
magnetic field with respect to theNV− axis and a bath of excess electron
and nuclear spins in the host material limited the echo time to times
shorter than the real relaxation times.

Longitudinal decay rate
To get a value for g∥, we used the dispersive shift of the cavity mode
coupled to a detuned spin system. To enter the dispersive regime, we
detuned the spin system such that the detuning was much larger than
the collective coupling strengthW. The spin system acted as a refractive
medium that shifted the resonance frequency if the spin systemwas po-
larized in the ground state. By applying a strong microwave tone, we
excited a fraction of the NV− ensemble, which led to a shift of the res-
onator frequency.Wemonitored this frequency shift over time, while the
spin system relaxed back into its thermal equilibrium state with the
characteristic rate g∥. This gave a lower bound for the longitudinal relaxa-
tion time of T1 = 44 s (18), justifying the adiabatic elimination technique.
Angerer et al., Sci. Adv. 2017;3 : e1701626 8 December 2017
The real longitudinal relaxation timeswere potentially longer, but spin
diffusion processes by spin-spin interaction between neighboring
NV− center spins and additional electron spins limited the measured
relaxation times to times shorter than the intrinsic longitudinal re-
laxation times.

Theoretical modeling
To calculate the quench dynamics displayed in Fig. 4, we numerically
solved theMaxwell-Bloch equations (Eq. 2) for the driving signals chosen
nearby the first-order transition (see the main text for details) using the
standardRunge-Kuttamethod.As an initial condition,we took the steady
state given by Eq. 3, which lay on the upper branch depicted in Fig. 3C
and corresponded to the limit of strong driving with |sj

z|, |sj
−| ≪ 1. To

accurately describe the dynamics and to achieve a good correspon-
dence with experimental data, we took into account the effect of an
inhomogeneous broadening by modeling the spin density with a q-
Gaussian shape for the spin density, r(w) = z [1 − (1 − q) (w − ws)

2/
D2]1/(1 − q), distributed around themean frequencyws/2p =2.6915GHz,
with the parameter q = 1.39, the width D/2p = 5.3 MHz, and a normal-
ization constant z. Such a shape for r(w) was previously established
by obtaining an excellent agreement between our theoretical model
and the experiment, when treating the problem in the framework of
the Volterra equation valid in the limit of weak driving signals (35). We
then straightforwardly discretized our problem by performing the
transformation gj = W[r(wj)/∑l r(wl)]

1/2, where W2 = ∑j g
2
j stands for

the collective coupling strength [W/2p = 9.6MHz (Fig. 3, A and B) and
12.6 MHz (Fig. 3C)]. Because, in total, we dealt with a sizable number of
spins (N≈ 1012), we made our problem numerically tractable by dividing
spins into many subgroups with approximately the same coupling
strengths so that the numerical values for gj in Eq. 2 represent a coupling
strengthwithin each subgroup rather than an individual coupling strength.

Critical cooperativity
From Eq. 3, it was straightforward to derive a condition for the thresh-
old of bistability, which was accompanied by a negative slope of the
driving strength h as a function of the transmission amplitude |a|. It
is given by the following inequality

dh
d aj j ¼ kþ∑

k

g2kg∥g⊥
g∥ðg2⊥ þ Q2

kÞ þ 4g2k aj j2g⊥
þ

∑
k

g2kg∥g⊥⋅8g
2
kg⊥ aj j2

ðg∥ðg2⊥ þ Q2
kÞ þ 4g2k aj j2g⊥Þ2

≤0

For the simple case of a homogeneous spin ensemble, this condition
could be solved analytically, giving the well-known threshold for bi-
stability of Ccoll > 8. In the case of inhomogeneous broadening, the re-
quired collective cooperativity to observe bistability increasedmarkedly
as compared to the homogeneous case (31). Numerical simulations
show that, for the q-Gaussian spin distribution used in our manuscript,
the effect of bistability can be observed for Ccoll > 42.2, which
corresponds to a collective coupling ofW/2p = 8.86MHz. The threshold
for bistability depends not only on the width of the distribution but
also on its specific shape. Changing from a q-Gaussian to a Gaussian or
a Lorentzian spin distribution changes the threshold to Ccoll > 40.8 or
Ccoll > 45.2, respectively (by changing only the coupling strength while
keeping all other parameters constant).
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Adiabatic elimination
Using the fact that g∥≪ k, g⊥, andW, the dynamics at large times (when
t≫ 1/k, 1/g⊥, and 2p/W) could be considerably simplified because the
cavity amplitude a and the spin lowering expectation values sj

− adiabat-
ically follow the evolution of the z component of the spin operator
expectation value sj

z. By introducing the small parameter D = g∥/g⊥
and the slowdimensionless time t= g∥t, we finally derived a first-order
differential Eq. 4 for the intracavity intensity |a|2.
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